Jump to content

Recommended Posts

Posted
low_keystone.png

Solar systems with life-bearing planets may be rare if they are dependent on the presence of asteroid belts of just the right mass, according to a study by Rebecca Martin, a NASA Sagan Fellow from the University of Colorado in Boulder, and astronomer Mario Livio of the Space Telescope Science Institute in Baltimore, Md.

They suggest that the size and location of an asteroid belt, shaped by the evolution of the Sun's protoplanetary disk and by the gravitational influence of a nearby giant Jupiter-like planet, may determine whether complex life will evolve on an Earth-like planet. The findings will appear today in the Monthly Notices of the Royal Astronomical Society: Letters (published by Oxford University Press).

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Artemis II Mission Patch Just Launched
    • By European Space Agency
      Image: This image shows Webb’s recent observation of the asteroid 2024 YR4 using both its Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). Data from NIRCam shows reflected light, while the MIRI observations show thermal light.
      On 8 March 2025, the NASA/ESA/CSA James Webb Space Telescope turned its watchful eye toward asteroid 2024 YR4, which we now know poses no significant threat to Earth in 2032 and beyond.
      This is the smallest object targeted by Webb to date, and one of the smallest objects to have its size directly measured.
      Observations were taken to study the thermal properties of 2024 YR4, including how quickly it heats up and cools down and how hot it is at its current distance from the Sun. These measurements indicate that this asteroid does not share properties observed in larger asteroids. This is likely a combination of its fast spin and lack of fine-grained sand on its surface. Further research is needed, however this is considered consistent with a surface dominated by rocks that are roughly fist-sized or larger.
      Asteroid 2024 YR4 was recently under close watch by the team at ESA's Near Earth Objects Coordination Centre, located in Italy. Planetary defence experts from the Agency's Space Safety programme worked with NASA and the international asteroid community to closely watch this object and refine its orbit, which was eventually determined to not pose a risk of Earth impact. Read details on this unusual campaign via ESA's Rocket Science blog and in news articles here and here.
      Webb’s observations indicate that the asteroid measures roughly 60 meters (comparable to the height of a 15-story building).
      The new observations from Webb not only provide unique information about 2024 YR4’s size, but can also complement ground-based observations of the object's position to help improve our understanding of the object’s orbit and future trajectory.
      Note: This post highlights data from Webb science in progress, which has not yet been through the peer-review process.
      [Image description: A collage of three images showing the black expanse of space. Two-thirds of the collage is taken up by the black background sprinkled with small, blurry galaxies in orange, blue, and white. There are two images in a column at the right side of the collage. On the right side of the main image, not far from the top, a very faint dot is outlined with a white square. At the right, there are two zoomed in views of this area. The top box is labeled NIRCam and shows a fuzzy dot at the center of the inset. The bottom box is labeled MIRI and shows a fuzzy pinkish dot.]
      View the full article
    • By NASA
      2 min read
      Citizen Scientists Use NASA Open Science Data to Research Life in Space
      2023 Workshop of Analysis Working Group members, Washington, D.C., November 14, 2023. Now, you are invited to join their quest to understand how life can thrive in deep space! Want to learn more first? Join our live virtual event April 17 at 3pm Eastern Time to hear an overview of the OSDR AWG’s operations. Photo: NASA OSDR Team How can life thrive in deep space? The Open Science Data Repository Analysis Working Groups invite volunteers from all backgrounds to help answer this question. Request to join these citizen science groups to help investigate how life adapts to space environments, exploring topics like radiation effects, microgravity’s impact on human and plant health, and how microbes change in orbit.
      Currently, nine Analysis Working Groups (AWGs) hold monthly meetings to advance their specific focus areas. Participants collaborate using an online platform, the AWG “Forum-Space”, where they connect with peers and experts, join discussions, and contribute to over 20 active projects. 
      The AWGs work with data primarily from the NASA Open Science Data Repository (OSDR), a treasure trove of spaceflight data on physiology, molecular biology, bioimaging, and much more. For newcomers, there are tutorials and a comprehensive paper covering all aspects of the repository and the AWG community. You can explore 500+ studies, an omics multi-study visualization portal, the environmental data app, and RadLab, a portal for radiation telemetry data. (“Omics” refers to fields of biology that end in “omics,” like “genomics”.)   
      Each of the nine AWGs has a Lead who organizes their group and holds monthly virtual meetings. Once you join, make sure to connect with the Lead and get on the agenda so you can introduce yourself. Learn more about the AWGs here.
      Have an idea for a new project? Propose a new project and help lead it! From data analysis and visualization to shaping data standards and conducting literature meta-analyses, there’s a place for everyone to contribute. Request to join, and together, we can address a great challenge for humanity: understanding and enabling life to thrive in deep space! 
      Want to learn more?
      On April 17 at 3pm Eastern Time, the NASA Citizen Science Leaders Series is hosting an virtual event with Ryan Scott about these Analysis Working Groups and their work. Ryan is the Science Lead for the Ames Life Sciences Data Archive and the liaison between the Open Data Science Repository and the Analysis Working Groups. Click here to register for this event!
      Share








      Details
      Last Updated Apr 01, 2025 Related Terms
      Citizen Science Biological & Physical Sciences Explore More
      9 min read Interview with Michiharu Hyogo, Citizen Scientist and First Author of a New Scientific Paper


      Article


      2 weeks ago
      2 min read Redshift Wranglers Reach Remarkable Milestones


      Article


      4 weeks ago
      2 min read 2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds


      Article


      4 weeks ago
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4493-4494: Just Looking Around
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 25, 2025 — sol 4491, or Martian day 4,491 of the Mars Science Laboratory mission — at 17:16:50 UTC. NASA/JPL-Caltech Written by Alex Innanen, atmospheric scientist at York University
      Earth planning date: Wednesday, March 26, 2025
      It’s my second shift of the week as the Environmental theme lead and keeper of the plan (a bit of a mouthful we shorten to ESTLK) and today started out feeling eerily similar to Monday. Once again, Curiosity is posing like a geologist, which means that once again we can’t unstow the arm and will be skipping contact science. The silver lining is that this means we have extra time to have a good look around.
      The plan also looks similar to Monday’s — targeted remote sensing on the first sol before driving away, and then untargeted remote sensing on the next. On sol 4493 we start our remote sensing, almost as remote as we can get, with a suprahorizon movie looking for clouds in the south. A dust-devil survey rounds out the sol’s environmental observations, and then the geology theme group can get down to the serious business of looking at rocks. For Mastcam this means observing a group of bedrock targets all called “Observatory Trail” (one of which you can see in the middle of the image above), pointing out some interesting veins in “Point Loma,” and casting their gaze out toward “Black Butte” (which I could not think of a fun pun for…). ChemCam has a LIBS observation of “Cholla,” as well as two long-distance observations of the Texoli Butte and the boxwork structures. Our second sol is a little more restrained, as untargeted sols tend to be. But Curiosity will still have plenty of energy after a good rest. We’re taking advantage of that with an extra-long dust-devil movie. Even though we’re in our cloudy season, we still sometimes see dust lifting, and having that extra time to look out for it increases our chances of catching a wind gust or a dust devil in action. Alongside that we also have a Mastcam tau observation to keep an eye on the amount of dust in the atmosphere, and wrap up with a ChemCam AEGIS activity to autonomously choose a LIBS target.
      Share








      Details
      Last Updated Mar 28, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4491-4492: Classic Field Geology Pose


      Article


      2 days ago
      3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)


      Article


      4 days ago
      3 min read Sols 4486-4487: Ankle-Breaking Kind of Terrain!


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By European Space Agency
      As ESA’s Hera planetary defence mission flew past planet Mars it autonomously locked onto dozens of impact craters and other prominent surface features to track them over time, in a full-scale test of the self-driving technology that the spacecraft will employ to navigate around its target asteroids.
      View the full article
  • Check out these Videos

×
×
  • Create New...