Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut and Expedition 72 Flight Engineer Don Pettit points a camera outside a window on the International Space Station’s Poisk module for a sun photography session. (Credit: NASA) Students from Hawthorne Elementary School in Boise, Idaho, will have the chance to hear NASA astronaut Don Pettit answer their prerecorded science, technology, engineering, and math (STEM) related questions from aboard the International Space Station.
      Watch the 20-minute space-to-Earth call at 12:30 p.m. EST Friday, Jan. 10, on NASA+ and learn how to watch NASA content on various platforms, including social media.
      Media interested in covering the event must RSVP by 5 p.m., Tuesday, Jan. 7, to
      Dan Hollar at dan.hollar@boiseschools.org or 208-854-4064.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      View the full article
    • By NASA
      NASA has selected multiple companies to expand the agency’s Near Space Network’s commercial direct-to-Earth capabilities services, which is a mission-critical communication capability that allows spacecraft to transmit data directly to ground stations on Earth.
      The work will be awarded under new Near Space Network services contracts that are firm-fixed-price, indefinite-delivery/indefinite-quantity contracts. Project timelines span from February 2025 to September 2029, with an additional five-year option period that could extend a contract through Sept. 30, 2034. The cumulative maximum value of all Near Space Network Services contracts is $4.82 billion.
      Some companies received multiple task orders for subcategories identified in their contracts. Awards are as follows:
      Intuitive Machines of Houston will receive two task order awards on its contract for Subcategory 1.2 GEO to Cislunar Direct to Earth (DTE) Services and Subcategory 1.3 xCislunar DTE Services to support NASA’s Lunar Exploration Ground Segment, providing additional capacity to alleviate demand on the Deep Space Network and to meet the mission requirements for unique, highly elliptical orbits. The company also previously received a task order award for Subcategory 2.2 GEO to Cislunar Relay Services. Kongsberg Satellite Services of Tromsø, Norway, will receive two task order awards on its contract for Subcategory 1.1 Earth Proximity DTE and Subcategory 1.2 to support science missions in low Earth orbit and NASA’s Lunar Exploration Ground Segment, providing additional capacity to alleviate demand on the Deep Space Network. SSC Space U.S. Inc. of Horsham, Pennsylvania, will receive two task order awards on its contract for Subcategories 1.1 and 1.3 to support science missions in low Earth orbit and to meet the mission requirements for unique, highly elliptical orbits. Viasat, Inc. of Duluth, Georgia, will be awarded a task order on its contract for Subcategory 1.1 to support science missions in low Earth orbit. The Near Space Network’s direct-to-Earth capability supports many of NASA’s missions ranging from climate studies on Earth to research on celestial objects. It also will play a role in NASA’s Artemis campaign, which calls for long-term exploration of the Moon.
      NASA’s goal is to provide users with communication and navigation services that are secure, reliable, and affordable, so that all NASA users receive the services required by their mission within their latency, accuracy, and availability requirements.
      These awards demonstrate NASA’s ongoing commitment to fostering strong partnerships with the commercial space sector, which plays an essential role in delivering the communications infrastructure critical to the agency’s science and exploration missions.
      As part of the agency’s SCaN (Space Communications and Navigation) Program, teams at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will carry out the work of the Near Space Network. The Near Space Network provides missions out to 1.2 million miles (2 million kilometers) with communications and navigation services, enabling spacecraft to exchange critical data with mission operators on Earth. Using space relays in geosynchronous orbit and a global system of government and commercial direct-to-Earth antennas on Earth, the network brings down terabytes of data each day.
      Learn more about NASA’s Near Space Network:
      https://www.nasa.gov/near-space-network
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Maryland
      757-824-2958
      jeremy.l.eggers@nasa.gov
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A crane lowers the steel reflector framework for Deep Space Station 23 into position Dec. 18 on a 65-foot-high (20-meter) platform above the antenna’s pedestal that will steer the reflector. Panels will be affixed to the structure create a curved surface to collect radio frequency signals.NASA/JPL-Caltech After the steel framework of the Deep Space Station 23 reflector dish was lowered into place on Dec. 18, a crew installed the quadripod, a four-legged support structure that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s receiver.NASA/JPL-Caltech Deep Space Station 23’s 133-ton reflector dish was recently installed, marking a key step in strengthening NASA’s Deep Space Network.
      NASA’s Deep Space Network, an array of giant radio antennas, allows agency missions to track, send commands to, and receive scientific data from spacecraft venturing to the Moon and beyond. NASA is adding a new antenna, bringing the total to 15, to support increased demand for the world’s largest and most sensitive radio frequency telecommunication system.
      Installation of the latest antenna took place on Dec. 18, when teams at NASA’s Goldstone Deep Space Communications Complex near Barstow, California, installed the metal reflector framework for Deep Space Station 23, a multifrequency beam-waveguide antenna. When operational in 2026, Deep Space Station 23 will receive transmissions from missions such as Perseverance, Psyche, Europa Clipper, Voyager 1, and a growing fleet of future human and robotic spacecraft in deep space.
      “This addition to the Deep Space Network represents a crucial communication upgrade for the agency,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) program. “The communications infrastructure has been in continuous operation since its creation in 1963, and with this upgrade we are ensuring NASA is ready to support the growing number of missions exploring the Moon, Mars, and beyond.”
      This time-lapse video shows the entire day of construction activities for the Deep Space Station 23 antenna at the NASA Deep Space Network’s Goldstone Space Communications Complex near Barstow, California, on Dec. 18. NASA/JPL-Caltech Construction of the new antenna has been under way for more than four years, and during the installation, teams used a crawler crane to lower the 133-ton metal skeleton of the 112-foot-wide (34-meter-wide) parabolic reflector before it was bolted to a 65-foot-high (20-meter-high) alidade, a platform above the antenna’s pedestal that will steer the reflector during operations.
      “One of the biggest challenges facing us during the lift was to ensure that 40 bolt-holes were perfectly aligned between the structure and alidade,” said Germaine Aziz, systems engineer, Deep Space Network Aperture Enhancement Program of NASA’s Jet Propulsion Laboratory in Southern California. “This required a meticulous emphasis on alignment prior to the lift to guarantee everything went smoothly on the day.”
      Following the main lift, engineers carried out a lighter lift to place a quadripod, a four-legged support structure weighing 16 1/2 tons, onto the center of the upward-facing reflector. The quadripod features a curved subreflector that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s pedestal, where the antenna’s receivers are housed.
      In the early morning of Dec. 18, a crane looms over the 112-foot-wide (34-meter-wide) steel framework for Deep Space Station 23 reflector dish, which will soon be lowered into position on the antenna’s base structure.NASA/JPL-Caltech Engineers will now work to fit panels onto the steel skeleton to create a curved surface to reflect radio frequency signals. Once complete, Deep Space Station 23 will be the fifth of six new beam-waveguide antennas to join the network, following Deep Space Station 53, which was added at the Deep Space Network’s Madrid complex in 2022.
      “With the Deep Space Network, we are able to explore the Martian landscape with our rovers, see the James Webb Space Telescope’s stunning cosmic observations, and so much more,” said Laurie Leshin, director of JPL. “The network enables over 40 deep space missions, including the farthest human-made objects in the universe, Voyager 1 and 2. With upgrades like these, the network will continue to support humanity’s exploration of our solar system and beyond, enabling groundbreaking science and discovery far into the future.”
      NASA’s Deep Space Network is managed by JPL, with the oversight of NASA’s SCaN Program. More than 100 NASA and non-NASA missions rely on the Deep Space Network and Near Space Network, including supporting astronauts aboard the International Space Station and future Artemis missions, monitoring Earth’s weather and the effects of climate change, supporting lunar exploration, and uncovering the solar system and beyond. 
      For more information about the Deep Space Network, visit:
      https://www.nasa.gov/communicating-with-missions/dsn
      News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2024-179
      Share
      Details
      Last Updated Dec 20, 2024 Related Terms
      Deep Space Network Jet Propulsion Laboratory Space Communications & Navigation Program Space Operations Mission Directorate Explore More
      4 min read Lab Work Digs Into Gullies Seen on Giant Asteroid Vesta by NASA’s Dawn
      Article 8 hours ago 5 min read Avalanches, Icy Explosions, and Dunes: NASA Is Tracking New Year on Mars
      Article 9 hours ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 Min Read Celebrating 20 Years: Night Sky Network
      2023 Partial Solar Eclipse Viewing at Camino Real Marketplace with the View the Santa Barbara Astronomical Unit. Credits:
      Photo by Chuck McPartlin by Vivan White & Kat Troche of the Astronomical Society of the Pacific
      NASA’s Night Sky Network is one of the most successful and longstanding grassroots initiatives for public engagement in astronomy education. Started in 2004 with the PlanetQuest program out of the Jet Propulsion Laboratory and currently supported by NASA’s Science Activation, the Night Sky Network (NSN) plays a critical role in fostering science literacy through astronomy. By connecting NASA science and missions to support amateur astronomy clubs, NSN leverages the expertise and enthusiasm of club members, who bring this knowledge to schools, museums, observatories, and other organizations, bridging the gap between NASA science and the public. Now in its 20th year, NSN supports over 400 astronomy clubs dedicated to bringing the wonder of the night sky to their communities across the US, connecting with 7.4 million people across the United States and its territories since its inception.
      International Observe the Moon Night, September 2024 Credit: Oklahoma City Astronomy Club Humble Beginnings
      It all started with an idea – astronomy clubs already do great outreach, and club members know a lot of astronomy (shown definitively by founder Marni Berendsen’s research), and they love to talk with the public – how could NASA support these astronomy clubs in sharing current research and ideas using informal activities designed for use in the places that amateur astronomers do outreach.  Thanks to funding through NASA JPL’s PlanetQuest public engagement program, the Night Sky Network was born in 2004, with more than 100 clubs joining the first year.
      Raynham Public Observing Night, February 2004 Credit: Astronomical Society of Southern New England/Mark Gibson As quoted from the first NSN news article, “NASA is very excited to be working closely with the amateur astronomy community,” said Michael Greene, current Director for Communications and Education and former head of public engagement for JPL’s Navigator Program and PlanetQuest initiatives, “Amateurs want more people to look at the sky and understand astronomy, and so do we. Connecting what we do with our missions to the sense of wonder that comes when you look up at the stars and the planets is one of our long-term objectives. We have a strong commitment to inspiring the next generation of explorers. Lending support to the energy that the amateur astronomy community brings to students and the public will allow NASA to reach many more people.”
      Taking off like a rocket, Night Sky Network had over 100 clubs registered on their website within the first year.
      The Toolkits
      Outreach Toolkits were developed to assist clubs with their endeavors. These kits included educational materials, hands-on activities, and guides to explaining topics in an accessible way. So far, 13 toolkits have been created with topics ranging from the scale of the universe to how telescopes work. To qualify for these free Toolkits, clubs must be active in their communities, hosting two outreach events every three months or five outreach events within a calendar year. Supplemental toolkits were also created based on special events, such as the solar eclipses and the 50th anniversary of Apollo’s Moon landing. A new toolkit is in development to teach audiences about solar science, and NSN is on track to support clubs well into the future.
      Rye Science Day, October 2014 Credit: Southern Colorado Astronomical Society/Malissa Pacheco NSN also hosts archived video trainings on these toolkits and other topics via its YouTube channel and a monthly webinar series with scientists from various institutions worldwide. Lastly, a monthly segment called Night Sky Notes is produced for clubs to share with their audiences via newsletters and mailing lists.
      Sharing the Universe
      In 2007, a National Science Foundation grant provided funding for further research into astronomy club needs. From that came three resources for clubs – the Growing Your Astronomy Club and Getting Started with Outreach video series, as well as an updated website with a national calendar and club and event coordination. Now you can find hundreds of events each month across the country, including virtual events that you can join from anywhere.
      Night Sky Network: Current and Future
      Map of Night Sky Network clubs within the United States, as of November 2024 Credit: Night Sky Network/Google Maps View the full article
    • By European Space Agency
      A multi-orbit constellation of about 300 satellites that will deliver resilient, secure and fast communications for EU governments, European companies and citizens will be put in orbit after two contracts were confirmed today in Brussels.
      View the full article
  • Check out these Videos

×
×
  • Create New...