Members Can Post Anonymously On This Site
'Dark Core' May Not Be So Dark After All
-
Similar Topics
-
By NASA
Robert Markowitz The four astronauts who will be the first to fly to the Moon under NASA’s Artemis campaign have designed an emblem to represent their mission that references both their distant destination and the home they will return to. The crew unveiled their patch in this April 2, 2025, photo.
The crew explained the patch’s symbolism, and its play on the abbreviation of Artemis II to AII, with the following description: The Artemis II test flight begins when a mighty team launches the first crew of the Artemis generation. This patch designates the mission as “AII,” signifying not only the second major flight of the Artemis campaign, but also an endeavor of discovery that seeks to explore for all and by all. Framed in Apollo 8’s famous Earthrise photo, the scene of the Earth and the Moon represents the dual nature of human spaceflight, both equally compelling: The Moon represents our exploration destination, focused on discovery of the unknown. The Earth represents home, focused on the perspective we gain when we look back at our shared planet and learn what it is to be uniquely human. The orbit around Earth highlights the ongoing exploration missions that have enabled Artemis to set sights on a long-term presence on the Moon and soon, Mars.
Commander Reid Wiseman, pilot Victor Glover, and mission specialist Christina Koch from NASA, and mission specialist Jeremy Hansen from CSA (Canadian Space Agency), will venture around the Moon in 2026 on Artemis II. The 10-day flight will test NASA’s foundational human deep space exploration capabilities, the SLS rocket, Orion spacecraft, for the first time with astronauts. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
Text credit: Brandi Dean, Courtney Beasley
Image credit: NASA/Robert Markowitz
View the full article
-
By NASA
NASA/Frank Michaux Technicians from NASA and primary contractor Amentum join the SLS (Space Launch System) rocket with the stacked solid rocket boosters for the Artemis II mission at NASA’s Kennedy Space Center in Florida on March 23, 2025. The core stage is the largest component of the rocket, standing 212 feet tall and weighing about 219,000 pounds with its engines. The stage is the backbone of the rocket, supporting the launch vehicle stage adapter, interim cryogenic propulsion stage, Orion stage adapter, and the Orion spacecraft.
Artemis II is the first crewed test flight under NASA’s Artemis campaign and is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.
Image credit: NASA/Frank Michaux
View the full article
-
By Space Force
U.S. Space Force Col. Nick Hague returned to Earth following a six-month mission aboard the International Space Station, March 18, 2025.
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This image shows about 1.5% of Euclid’s Deep Field South, one of three regions of the sky that the telescope will observe for more than 40 weeks over the course of its prime mission, spotting faint and distant galaxies. One galaxy cluster near the center is located almost 6 billion light-years away from Earth. ESA/Euclid/Euclid Consortium/NASA; image processing by J.-C. Cuillandre, E. Bertin, G. An-selmi With contributions from NASA, the mission is looking back into the universe’s history to understand how the universe’s expansion has changed.
The Euclid mission — led by ESA (European Space Agency) with contributions from NASA — aims to find out why our universe is expanding at an accelerating rate. Astronomers use the term “dark energy” to refer to the unknown cause of this phenomenon, and Euclid will take images of billions of galaxies to learn more about it. A portion of the mission’s data was released to the public by ESA released on Wednesday, March 19.
This new data has been analyzed by mission scientists and provides a glimpse of Euclid’s progress. Deemed a “quick” data release, this batch focuses on select areas of the sky to demonstrate what can be expected in the larger data releases to come and to allow scientists to sharpen their data analysis tools in preparation.
The data release contains observations of Euclid’s three “deep fields,” or areas of the sky where the space telescope will eventually make its farthest observations of the universe. Featuring one week’s worth of viewing, the Euclid images contain 26 million galaxies, the most distant being over 10.5 billion light-years away. Launched in July 2023, the space telescope is expected to observe more than 1.5 billion galaxies during its six-year prime mission.
The entirety of the Euclid mission’s Deep Field South region is shown here. It is about 28.1 square degrees on the sky. Euclid will observe this and two other deep field regions for a total of about 40 weeks during its 6-year primary mission. ESA/Euclid/Euclid Consortium/NASA; image processing by J.-C. Cuillandre, E. Bertin, G. An-selmi By the end of that prime mission, Euclid will have observed the deep fields for a total of about 40 weeks in order to gradually collect more light, revealing fainter and more distant galaxies. This approach is akin to keeping a camera shutter open to photograph a subject in low light.
The first deep field observations, taken by NASA’s Hubble Space Telescope in 1995, famously revealed the existence of many more galaxies in the universe than expected. Euclid’s ultimate goal is not to discover new galaxies but to use observations of them to investigate how dark energy’s influence has changed over the course of the universe’s history.
In particular, scientists want to know how much the rate of expansion has increased or slowed down over time. Whatever the answer, that information would provide new clues about the fundamental nature of this phenomenon. NASA’s Nancy Grace Roman Space Telescope, set to launch by 2027, will also observe large sections of the sky in order to study dark energy, complementing Euclid’s observations.
The location of the Euclid deep fields are shown marked in yellow on this all-sky view from ESA’s Gaia and Planck missions. The bright horizontal band is the plane of our Milky Way galaxy. Euclid’s Deep Field South is at bottom left.ESA/Euclid/Euclid Consortium/NASA; ESA/Gaia/DPAC; ESA/Planck Collaboration Looking Back in Time
To study dark energy’s effect throughout cosmic history, astronomers will use Euclid to create detailed, 3D maps of all the stuff in the universe. With those maps, they want to measure how quickly dark energy is causing galaxies and big clumps of matter to move away from one another. They also want to measure that rate of expansion at different points in the past. This is possible because light from distant objects takes time to travel across space. When astronomers look at distant galaxies, they see what those objects looked like in the past.
For example, an object 100 light-years away looks the way it did 100 years ago. It’s like receiving a letter that took 100 years to be delivered and thus contains information from when it was written. By creating a map of objects at a range of distances, scientists can see how the universe has changed over time, including how dark energy’s influence may have varied.
But stars, galaxies, and all the “normal” matter that emits and reflects light is only about one-fifth of all the matter in the universe. The rest is called “dark matter” — a material that neither emits nor reflects light. To measure dark energy’s influence on the universe, astronomers need to include dark matter in their maps.
Bending and Warping
Although dark matter is invisible, its influence can be measured through something called gravitational lensing. The mass of both normal and dark matter creates curves in space, and light traveling toward Earth bends or warps as it encounters those curves. In fact, the light from a distant galaxy can bend so much that it forms an arc, a full circle (called an Einstein ring), or even multiple images of the same galaxy, almost as though the light has passed through a glass lens.
In most cases, gravitational lensing warps the apparent shape of a galaxy so subtly that researchers need special tools and computer software to see it. Spotting those subtle changes across billions of galaxies enables scientists to do two things: create a detailed map of the presence of dark matter and observe how dark energy influenced it over cosmic history.
It is only with a very large sample of galaxies that researchers can be confident they are seeing the effects of dark matter. The newly released Euclid data covers 63 square degrees of the sky, an area equivalent to an array of 300 full Moons. To date, Euclid has observed about 2,000 square degrees, which is approximately 14% of its total survey area of 14,000 square degrees. By the end of its mission, Euclid will have observed a third of the entire sky.
The dataset released this month is described in several preprint papers available today. The mission’s first cosmology data will be released in October 2026. Data accumulated over additional, multiple passes of the deep field locations will also be included in the 2026 release.
More About Euclid
Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium — consisting of more than 2,000 scientists from 300 institutes in 15 European countries, the United States, Canada, and Japan — is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme.
Three NASA-supported science teams contribute to the Euclid mission. In addition to designing and fabricating the sensor-chip electronics for Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument, JPL led the procurement and delivery of the NISP detectors as well. Those detectors, along with the sensor chip electronics, were tested at NASA’s Detector Characterization Lab at Goddard Space Flight Center in Greenbelt, Maryland. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech in Pasadena, California, supports U.S.-based science investigations, and science data is archived at the NASA / IPAC Infrared Science Archive (IRSA). JPL is a division of Caltech.
For more information about Euclid go to:
science.nasa.gov/mission/euclid/
News Media Contact
ESA Media Relations
media@esa.int
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
2025-039
Share
Details
Last Updated Mar 19, 2025 Related Terms
Euclid Galaxies, Stars, & Black Holes Jet Propulsion Laboratory Stars Explore More
5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet
Astrophysics observations at ultraviolet (UV) wavelengths often probe the most dynamic aspects of the universe.…
Article 24 hours ago 3 min read Students Dive Into Robotics at Competition Supported by NASA JPL
Article 2 days ago 3 min read NASA Analysis Shows Unexpected Amount of Sea Level Rise in 2024
Article 6 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov land in a SpaceX Dragon spacecraft in the water off the coast of Tallahassee, Florida on March 18, 2025. Hague, Gorbunov, Williams, and Wilmore returned from a long-duration science expedition aboard the International Space Station. Credit: NASA/Keegan Barber NASA’s SpaceX Crew-9 completed the agency’s ninth commercial crew rotation mission to the International Space Station on Tuesday, splashing down safely in a SpaceX Dragon spacecraft off the coast of Tallahassee, Florida, in the Gulf of America.
NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov, returned to Earth at 5:57 p.m. EDT. Teams aboard SpaceX recovery vessels retrieved the spacecraft and its crew. After returning to shore, the crew will fly to NASA’s Johnson Space Center in Houston and reunite with their families.
“We are thrilled to have Suni, Butch, Nick, and Aleksandr home after their months-long mission conducting vital science, technology demonstrations, and maintenance aboard the International Space Station,” said NASA acting Administrator Janet Petro. “Per President Trump’s direction, NASA and SpaceX worked diligently to pull the schedule a month earlier. This international crew and our teams on the ground embraced the Trump Administration’s challenge of an updated, and somewhat unique, mission plan, to bring our crew home. Through preparation, ingenuity, and dedication, we achieve great things together for the benefit of humanity, pushing the boundaries of what is possible from low Earth orbit to the Moon and Mars.”
Hague and Gorbunov lifted off at 1:17 p.m. Sept. 28, 2024, on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. The next day, they docked to the forward-facing port of the station’s Harmony module. Williams and Wilmore launched aboard Boeing’s Starliner spacecraft and United Launch Alliance Atlas V rocket on June 5, 2024, from Space Launch Complex 41 as part of the agency’s Boeing Crew Flight Test. The duo arrived at the space station on June 6. In August, NASA announced the uncrewed return of Starliner to Earth and integrated Wilmore and Williams as part of the space station’s Expedition 71/72 for a return on Crew-9. The crew of four undocked at 1:05 a.m. Tuesday to begin the trip home.
Williams and Wilmore traveled 121,347,491 miles during their mission, spent 286 days in space, and completed 4,576 orbits around Earth. Hague and Gorbunov traveled 72,553,920 miles during their mission, spent 171 days in space, and completed 2,736 orbits around Earth. The Crew-9 mission was the first spaceflight for Gorbunov. Hague has logged 374 days in space over his two missions, Williams has logged 608 days in space over her three flights, and Wilmore has logged 464 days in space over his three flights.
Throughout its mission, Crew-9 contributed to a host of science and maintenance activities and technology demonstrations. Williams conducted two spacewalks, joined by Wilmore for one and Hague for another, removing a radio frequency group antenna assembly from the station’s truss, collecting samples from the station’s external surface for analysis, installing patches to cover damaged areas of light filters on an X-ray telescope, and more. Williams now holds the record for total spacewalking time by a female astronaut, with 62 hours and 6 minutes outside of station, and is fourth on the all-time spacewalk duration list.
The American crew members conducted more than 150 unique scientific experiments and technology demonstrations between them, with over 900 hours of research. This research included investigations on plant growth and quality, as well as the potential of stem cell technology to address blood diseases, autoimmune disorders, and cancers. They also tested lighting systems to help astronauts maintain circadian rhythms, loaded the first wooden satellite for deployment, and took samples from the space station’s exterior to study whether microorganisms can survive in space.
The Crew-9 mission was the fourth flight of the Dragon spacecraft named Freedom. It also previously supported NASA’s SpaceX Crew-4, Axiom Mission 2, and Axiom Mission 3. The spacecraft will return to Florida for inspection and processing at SpaceX’s refurbishing facility at Cape Canaveral Space Force Station, where teams will inspect the Dragon, analyze data on its performance, and begin processing for its next flight.
The Crew-9 flight is part of NASA’s Commercial Crew Program, and its return to Earth follows on the heels of NASA’s SpaceX Crew-10 launch, which docked to the station on March 16, beginning another long-duration science expedition.
The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the space station and low Earth orbit. The program provides additional research time and has increased opportunities for discovery aboard humanity’s microgravity testbed for exploration, including helping NASA prepare for human exploration of the Moon and Mars.
Learn more about NASA’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
-end-
Amber Jacobson / Joshua Finch
Headquarters, Washington
202-358-1100
amber.c.jacobson@nasa.gov / joshua.a.finch@nasa.gov
Kenna Pell / Sandra Jones
Johnson Space Center, Houston
281-483-5111
kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov
Steve Siceloff / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
Share
Details
Last Updated Mar 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Humans in Space Expedition 72 International Space Station (ISS) ISS Research Space Operations Mission Directorate View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.