Jump to content

CSO releases Lines of Effort


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Space Force officials have selected 14 senior master sergeants and 25 master sergeants for promotion in the 24S9 and 25S8 promotion cycles, respectively.

      View the full article
    • By Space Force
      The Space Force senior leaders traveled to Europe for meetings with defense and military space leaders from Norway, Sweden, and NATO to reaffirm and strengthen space security cooperation.

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      European company apetito uses Neurala’s vision inspection software to ensure the quality of its prepared meals, such as green bean portions pictured here. The software evolved from code Neurala was developing more than a decade ago, with NASA funding, for a rover that could independently learn to traverse Martian terrain. Credit: Neurala Inc. Artificial intelligence software initially designed to learn and analyze Martian terrain is now at the heart of a system to monitor assembly lines on Earth. 

      The vision inspection software from Neurala Inc., an artificial intelligence company in Boston, Massachusetts, works with existing cameras, computers, and even cellphones to monitor the quality of products running along a conveyor belt, for instance.  

      “Our software can learn very quickly on a processor with a very small footprint, a skill we learned working with NASA,” said Neurala cofounder and CEO Massimiliano Versace. “By doing so, we enable vision inspection with whatever components are already available, deploying in minutes. In our exploration of the market, we realized that the manufacturing space had a precise need for this technology.”

      Versace and Neurala (Spinoff 2018) began working with NASA more than a decade ago on a project funded through the Small Business Technology Transfer (STTR) program. NASA was interested in “adaptive bio-inspired navigation for planetary exploration,” and Versace and his team had been working on neural network AI software modeled on the human brain. 
      Focusing on a rover concept that could independently learn to traverse Martian terrain, Neurala went on to win STTR Phase II funding for the project. Additional money from a NASA Center Innovation Fund enabled the Neurala team to adapt its technology to drone navigation and collision avoidance. 

      In both the rover and the drone applications, the Neurala software could run on a small device on the vehicle itself, eliminating the delay of sending signals to a decision maker in another location. Since then, the company developed the software to help monitor assembly lines.

      Onsite computing is an advantage in manufacturing, as well, where an assembly line may have a hundred items passing every minute, making visual inspections for quality control difficult.
      Read More Share
      Details
      Last Updated Nov 01, 2024 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read The View from Space Keeps Getting Better  
      After 50 years of Landsat, discovery of new commercial and scientific uses is only accelerating
      Article 2 weeks ago 2 min read Controlled Propulsion for Gentle Landings 
      A valve designed for NASA rover landings enables effective stage separations for commercial spaceflight
      Article 3 weeks ago 2 min read Tech Today: Spraying for Food Safety
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Technology Transfer & Spinoffs
      Rover Basics
      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
      Artificial Intelligence
      SBIR/STTR Resources
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4350-4351: A Whole Team Effort
      NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on sol 4348 — Martian day 4,348 of the Mars Science Laboratory mission — on Oct. 29, 2024, at 14:20:08 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Oct. 30, 2024
      Just like you and me, the Curiosity rover has a few idiosyncratic tendencies — special ways that the rover behaves that we, the team on Earth, have come to understand to be harmless but still throw a curveball to our planning. 
      Unfortunately, the set of activities that were planned to execute on Monday behaved in one of these special ways — leaving the rover’s arm down on the ground without completing the planned set of activities, including the remainder of our contact science, remote sensing, or drive. 
      When this happens the whole team gets together to review the information Curiosity sends to us, and we ensure as a team that we understand the quirky way the rover acted and that we are good to proceed. While not ideal for keeping up with our scientific cadence, I appreciate these moments because they remind me of all the experts we have evaluating the rover’s health and safety day in and day out.
      So for today’s plan — we completed the contact science observations of “Reds Meadow” that had been planned on Monday and picked up a second suite of contact science measurements of “Ladder Lake.” Both of these are bedrock targets and the APXS and MAHLI observations we make will continue our characterization of changes in bedrock composition and morphology in this area. We also repeated the remote sensing observations planned on Monday that did not execute.
      With a fresh set of Rover Planner eyes, we reassessed if the drive planned on Monday was still the best we could do and, impressively, today’s RP agreed. So the drive remains the same, making excellent progress toward our next imaging waypoint.
      The remainder of the plan contained our usual atmospheric measurements!
      We’ll see what Friday holds!
      Written by Elena Amador-French, Science Operations Coordinator at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Nov 01, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4348-4349: Smoke on the Water


      Article


      1 day ago
      2 min read A Spooky Soliday: Haunting Whispers from the Martian Landscape


      Article


      2 days ago
      3 min read Sols 4345-4347: Contact Science is Back on the Table


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By Space Force
      The U.S. Space Force and Canadian Armed Forces have kicked off an Operations and Sustainment Phase which will provide Canada with six years of access to the Space Force’s Mobile User Objective System Satellite System.

      View the full article
  • Check out these Videos

×
×
  • Create New...