Jump to content

Looking back at the eruption that shook the world


Recommended Posts

Hunga Tonga–Hunga Haʻapai eruption

One year ago, the Hunga Tonga-Hunga Ha’apai volcano erupted, causing widespread destruction to the Pacific Island Nation of Tonga, spewing volcanic material up to 58 km into the atmosphere. It brought a nearly 15 m tsunami that crashed ashore, destroying villages, and creating a sonic boom that rippled around the world – twice.

Satellites orbiting Earth scrambled to capture images and data of the aftermath of the disaster. Almost a year later, you can now listen to a sonification of the largest eruption of the 21st Century, created using wind data from ESA’s Aeolus mission.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist’s concept of a future airliner based on the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 submission from awardee Electra. The team’s project focuses on electric propulsion, integrated aircraft technologies, and vehicle design.Electra Picture yourself at an airport a few decades from now. What does your airliner look like? It’s more efficient, with lower emissions than today’s aircraft – what kinds of designs or technology make that possible? NASA is working to answer those questions by commissioning five new design studies looking to push the boundaries of possibility for sustainable aircraft. 
      Through NASA’s Advanced Aircraft Concepts for Environmental Sustainability (AACES) 2050 initiative, the agency asked industry and academia to come up with studies looking at aircraft concepts, key technologies, and designs that could offer the transformative solutions needed to secure commercial aviation’s sustainable future by 2050. NASA issued five awards, worth a total of $11.5 million, to four companies and one university. These new NASA-funded studies will help the agency identify and select promising aircraft concepts and technologies for further investigations. 
      Artist’s concept of a future airliner based on the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 submission from awardee Georgia Institute of Technology. The team’s project focuses on exploring scenarios and technologies based on an aircraft concept the institute has developed, known as ATH2ENA.Georgia Institute of Technology “Through initiatives like AACES, NASA is positioned to harness a broad set of perspectives about how to further increase aircraft efficiency, reduce aviation’s environmental impact and enhance U.S. technological competitiveness in the 2040s, 2050s, and beyond,” said Bob Pearce, NASA associate administrator for the Aeronautics Research Mission Directorate. “As a leader in U.S. sustainable aviation research and development, these awards are one example of how we bring together the best ideas and most innovative concepts from the private sector, academia, research agencies, and other stakeholders to pioneer the future of aviation.” 
      For decades, NASA has connected government agencies, industry, and academia to develop sustainable aviation technologies. In 2021, NASA launched its Sustainable Flight National Partnership, focused on technologies that could be incorporated into aircraft by the 2030s. The partnership’s research and development led to current NASA work including the experimental X-66 Sustainable Flight Demonstrator aircraft, its Electrified Powertrain Flight Demonstration project, and the development of more efficient engine cores and processes for the rapid manufacturing of lightweight composite materials. 
      Artist’s concept of a Pratt & Whitney advanced propulsion concept for the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 initiative. The Pratt & Whitney project focuses on commercial aviation propulsion technologies targeting thermal and propulsive efficiency improvements to reduce fuel consumption and greenhouse gas emissions.Pratt & Whitney The new AACES awards are initiating a similar process, but on a longer timeline, focusing on technologies to help transform aviation beyond SFNP with aircraft that could enter service by 2050. The kinds of partnerships NASA develops through SFNP and AACES are critical for the agency to support the U.S. goal of net-zero aviation emissions by 2050 and to help put aviation on a path toward energy-resilience. 
      “The AACES 2050 solicitation drew significant interest from the aviation community and as a result the award process was highly competitive,” said Nateri Madavan, director for NASA’s Advanced Air Vehicles Program. “The proposals selected come from a diverse set of organizations that will provide exciting and wide-ranging explorations of the scenarios, technologies, and aircraft concepts that will advance aviation towards its transformative sustainability goals.” 
      An artist’s concept of JetZero’s blended wing body, which the company’s team will use to evaluate technologies for the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 initiative. JetZero’s project will explore technologies that enable cryogenic, liquid hydrogen to be used as a fuel for commercial aviation to reduce greenhouse gas emissions.JetZero The AACES 2050 awards went to organizations that will form networks of university and corporate partners to advance their studies. NASA expects the awardees to complete their studies by mid-2026. The new awardee institutions are: 
      Aurora Flight Sciences, a Boeing Company, whose team will perform a comprehensive, “open-aperture” exploration of technologies and aircraft concepts for the 2050 timeframe. This will include examining new alternative aviation fuels, propulsion systems, aerodynamic technologies, and aircraft configurations along with other technology areas that arise throughout the study.  The Electra-led team will explore extending Electra’s novel distributed electric propulsion and its unique aerodynamic design capabilities to develop innovative wing and fuselage integrations that deliver sustainable aviation focused on enabling community-friendly emission reduction, noise reduction, and improved air travel access. The company’s existing small aircraft prototype has been flying for over a year, demonstrating Electra’s technology that aims to transform air travel with reduced environmental impact and improved operational efficiency.  Georgia Institute of Technology will perform a comprehensive exploration of sustainability technologies, including alternative fuels, propulsion systems, and aircraft configurations. The institute’s team will then explore new aircraft concepts incorporating the selected technologies with their Advanced Technology Hydrogen Electric Novel Aircraft (ATH2ENA) as a starting point.   JetZero will explore technologies that enable cryogenic, liquid hydrogen to be used as a fuel for commercial aviation to reduce greenhouse gas emissions. These technologies will be evaluated on both tube-and wing and JetZero’s blended wing body – an airplane shape that provides more options for larger hydrogen fuel tanks within the aircraft.  Pratt and Whitney a division of RTX Corporation, will explore a broad suite of commercial aviation propulsion technologies targeting thermal and propulsive efficiency improvements to reduce fuel consumption and greenhouse gas emissions. The Pratt & Whitney team will then down-select high-priority and alternative propulsion concepts for potential integration studies with various airframe concepts for aircraft in 2050 and beyond.  Artist’s concept of a 50-60 passenger hydrogen fuel cell electric plane created by Boeing through its future flight concept efforts. Aurora Flight Sciences, a Boeing Company, received an award through NASA’s Advanced Aircraft Concepts for Environmental Sustainability (AACES) 2050 initiative to examine new alternative aviation fuels propulsion systems, aerodynamic technologies, and aircraft configurations, along with other technology areas.Boeing AACES 2050 is part of NASA’s Advanced Air Transport Technology project, which explores and develops technology to further NASA’s vision for the future development of fixed-wing transport aircraft with revolutionary energy efficiency. The project falls under NASA’s Advanced Air Vehicles Program, which evaluates and develops technologies for new aircraft systems and explores promising air travel concepts. 
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      5 min read Math, Mentorship, Motherhood: Behind the Scenes with NASA Engineers
      Article 4 days ago 4 min read X-59 Fires Up its Engine for First Time on its Way to Takeoff
      Article 6 days ago 5 min read October Transformer of the Month: Nipa Phojanamongkolkij
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Quesst: The Vehicle
      Explore NASA’s History
      Share
      Details
      Last Updated Nov 12, 2024 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Research Mission Directorate Advanced Air Transport Technology Advanced Air Vehicles Program Sustainable Flight Demonstrator Sustainable Flight National Partnership View the full article
    • By NASA
      3 min read
      Sols 4345-4347: Contact Science is Back on the Table
      NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on sol 4343 — Martian day 4,343 of the Mars Science Laboratory mission — on Oct. 24, 2024 at 15:26:28 UTC. NASA/JPL-Caltech Earth planning date: Friday, Oct. 25, 2024
      The changes to the plan Wednesday, moving the drive a sol earlier, meant that we started off planning this morning about 18 meters (about 59 feet) farther along the western edge of Gediz Vallis and with all the data we needed for planning. This included the knowledge that once again one of Curiosity’s wheels was perched on a rock. Luckily, unlike on Wednesday, it was determined that it was safe to still go ahead with full contact science for this weekend. This consisted of two targets “Mount Brewer” and “Reef Lake,” two targets on the top and side of the same block.
      Aside from the contact science, Curiosity has three sols to fill with remote imaging. The first two sols include “targeted science,” which means all the imaging of specific targets in our current workspace. Then, after we drive away on the second sol, we fill the final sol of the plan with “untargeted science,” where we care less about knowing exactly where the rover is ahead of time. A lot of the environmental team’s (or ENV) activities fall under this umbrella, which is why our dedicated “ENV Science Block” (about 30 minutes of environmental activities one morning every weekend) tends to fall at the end of a weekend plan. 
      But that’s getting ahead of myself. The weekend plan starts off with two ENV activities — a dust devil movie and a suprahorizon cloud movie. While cloud movies are almost always pointed in the same direction, our dust devil movie has to be specifically targeted. Recently we’ve been looking southeast toward a more sandy area (which you can see above), to see if we can catch dust lifting there. After those movies we hand the reins back over to the geology team (or GEO) for ChemCam observations of Reef Lake and “Poison Meadow.” Mastcam will follow this up with its own observations of Reef Lake and the AEGIS target from Wednesday’s plan. The rover gets some well-deserved rest before waking up for the contact science I talked about above, followed by a late evening Mastcam mosaic of “Fascination Turret,” a part of Gediz Vallis ridge that we’ve seen before. 
      We’re driving away on the second sol, but before that we have about another hour of science. ChemCam and Mastcam both have observations of “Heaven Lake” and the upper Gediz Vallis ridge, and ENV has a line-of-sight observation, to see how much dust is in the crater, and a pre-drive deck monitoring image to see if any dust moves around on the rover deck due to either driving or wind. Curiosity gets a short nap before a further drive of about 25 meters (about 82 feet). 
      The last sol of the weekend is a ChemCam special. AEGIS will autonomously choose a target for imaging, and then ChemCam has a passive sky observation to examine changing amounts of atmospheric gases. The weekend doesn’t end at midnight, though — we wake up in the morning for the promised morning ENV block, which we’ve filled with two cloud movies, another line-of-sight, and a tau observation to see how dusty the atmosphere is.
      Written by Alex Innanen, Atmospheric Scientist at York University
      Share








      Details
      Last Updated Oct 28, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4343-4344: Late Slide, Late Changes


      Article


      3 days ago
      2 min read Red Rocks with Green Spots at ‘Serpentine Rapids’


      Article


      3 days ago
      4 min read Sols 4341-4342: A Bumpy Road


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This enhanced-color mosaic was taken on Sept. 27 by the Perseverance rover while climbing the western wall of Jezero Crater. Many of the landmarks visited by the rover during its 3½-year exploration of Mars can be seen.NASA/JPL-Caltech/ASU/MSSS On its way up the side of Jezero Crater, the agency’s latest Red Planet off-roader peers all the way back to its landing site and scopes the path ahead.  
      NASA’s Perseverance Mars rover is negotiating a steeply sloping route up Jezero Crater’s western wall with the aim of cresting the rim in early December. During the climb, the rover snapped not only a sweeping view of Jezero Crater’s interior, but also imagery of the tracks it left after some wheel slippage along the way. 
      An annotated version of the mosaic captured by Perseverance highlights nearly 50 labeled points of interest across Jezero Crater, including the rover’s landing site. The 44 images that make up the mosaic were taken Sept. 27.NASA/JPL-Caltech/ASU/MSSS Stitched together from 44 frames acquired on Sept. 27, the 1,282nd Martian day of Perseverance’s mission, the image mosaic features many landmarks and Martian firsts that have made the rover’s 3½-year exploration of Jezero so memorable, including the rover’s landing site, the spot where it first found sedimentary rocks, the location of the first sample depot on another planet, and the final airfield for NASA’s Ingenuity Mars Helicopter. The rover captured the view near a location the team calls “Faraway Rock,” at about the halfway point in its climb up the crater wall.  
      “The image not only shows our past and present, but also shows the biggest challenge to getting where we want to be in the future,” said Perseverance’s deputy project manager, Rick Welch of NASA’s Jet Propulsion Laboratory in Southern California. “If you look at the right side of the mosaic, you begin to get an idea what we’re dealing with. Mars didn’t want to make it easy for anyone to get to the top of this ridge.”
      Visible on the right side of the mosaic is a slope of about 20 degrees. While Perseverance has climbed 20-degree inclines before (both NASA’s Curiosity and Opportunity rovers had crested hills at least 10 degrees steeper), this is the first time it’s traveled that steep a grade on such a slippery surface.
      This animated orbital-map view shows the route NASA’s Perseverance Mars rover has taken since its February 2021 landing at Jezero Crater to July 2024, when it took its “Cheyava Falls” sample. As of October 2024, the rover has driven over 30 kilometers (18.65 miles), and has collected 24 samples of rock and regolith as well as one air sample. NASA/JPL-Caltech Soft, Fluffy
      During much of the climb, the rover has been driving over loosely packed dust and sand with a thin, brittle crust. On several days, Perseverance covered only about 50% of the distance it would have on a less slippery surface, and on one occasion, it covered just 20% of the planned route.
      “Mars rovers have driven over steeper terrain, and they’ve driven over more slippery terrain, but this is the first time one had to handle both — and on this scale,” said JPL’s Camden Miller, who was a rover planner, or “driver,” for Curiosity and now serves the same role on the Perseverance mission. “For every two steps forward Perseverance takes, we were taking at least one step back. The rover planners saw this was trending toward a long, hard slog, so we got together to think up some options.”
      On Oct. 3, they sent commands for Perseverance to test strategies to reduce slippage. First, they had it drive backward up the slope (testing on Earth has shown that under certain conditions the rover’s “rocker-bogie” suspension system maintains better traction during backward driving). Then they tried cross-slope driving (switchbacking) and driving closer to the northern edge of “Summerland Trail,” the name the mission has given to the rover’s route up the crater rim.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA’s Perseverance drives first backward then forward as it negotiates some slippery terrain found along a route up to the rim of Jezero Crater on Oct. 15. The Mars rover used one of its navigation cameras to capture the 31 images that make up this short video.NASA/JPL-Caltech Data from those efforts showed that while all three approaches enhanced traction, sticking close to the slope’s northern edge proved the most beneficial. The rover planners believe the presence of larger rocks closer to the surface made the difference.
      “That’s the plan right now, but we may have to change things up the road,” said Miller. “No Mars rover mission has tried to climb up a mountain this big this fast. The science team wants to get to the top of the crater rim as soon as possible because of the scientific opportunities up there. It’s up to us rover planners to figure out a way to get them there.”
      Tube Status
      In a few weeks, Perseverance is expected to crest the crater rim at a location the science team calls “Lookout Hill.” From there, it will drive about another quarter-mile (450 meters) to “Witch Hazel Hill.” Orbital data shows that Witch Hazel Hill contains light-toned, layered bedrock. The team is looking forward to comparing this new site to “Bright Angel,” the area where Perseverance recently discovered and sampled the “Cheyava Falls” rock.
      Tracks shown in this image indicate the slipperiness of the terrain Perseverance has encountered during its climb up the rim of Jezero Crater. The image was taken by one of rover’s navigation cameras on Oct. 11. NASA/JPL-Caltech The rover landed on Mars carrying 43 tubes for collecting samples from the Martian surface. So far, Perseverance has sealed and cached 24 samples of rock and regolith (broken rock and dust), plus one atmospheric sample and three witness tubes. Early in the mission’s development, NASA set the requirement for the rover to be capable of caching at least 31 samples of rock, regolith, and witness tubes over the course of Perseverance’s mission at Jezero. The project added 12 tubes, bringing the total to 43. The extras were included in anticipation of the challenging conditions found at Mars that could result in some tubes not functioning as designed.
      NASA decidedto retire two of the spare empty tubes because accessing them would pose a risk to the rover’s small internal robotic sample-handling arm needed for the task: A wire harness connected to the arm could catch on a fastener on the rover’s frame when reaching for the two empty sample tubes. 
      With those spares now retired, Perseverance currently has 11 empty tubes for sampling rock and two empty witness tubes.
      More About Perseverance
      A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
      NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      https://science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      2024-144
      Share
      Details
      Last Updated Oct 28, 2024 Related Terms
      Perseverance (Rover) Jet Propulsion Laboratory Mars Explore More
      6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
      Article 2 hours ago 4 min read Could Life Exist Below Mars Ice? NASA Study Proposes Possibilities
      Article 2 weeks ago 4 min read New Team to Assess NASA’s Mars Sample Return Architecture Proposals
      NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the…
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA’s SpaceX Crew-8 members, from left to right, Roscosmos cosmonaut Alexander Grebenkin and NASA astronauts Michael Barratt, Matthew Dominick, and Jeanette Epps, are seen inside the Dragon spacecraft shortly after having landed off the coast of Pensacola, Florida, on Oct. 25, 2024. Credit: NASA/Joel Kowsky NASA’s SpaceX Crew-8 mission successfully splashed down at 3:29 a.m. EDT Friday, off Pensacola, Florida, concluding a nearly eight-month science mission and the agency’s eighth commercial crew rotation mission to the International Space Station.  
      After launching March 3 on a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida, NASA astronauts Matthew Dominick, Michael Barratt, and Jeanette Epps, as well as Roscosmos cosmonaut Alexander Grebenkin, spent 232 days aboard the space station.
      Recovery teams from NASA and SpaceX quickly secured the spacecraft and assisted the astronauts during exit. The crew now will head to NASA’s Johnson Space Center in Houston, while the Dragon spacecraft will return to SpaceX facilities at Cape Canaveral Space Force Station in Florida for inspection and refurbishment for future missions.
      During their mission, crew members traveled nearly 100 million miles and completed 3,760 orbits around Earth. They conducted new scientific research to advance human exploration beyond low Earth orbit and benefit human life on Earth. Research and technology demonstrations included conducting stem cell research to develop organoid models for studying degenerative diseases, exploring how fuel temperature affects material flammability, and studying how spaceflight affects immune function in astronauts. Their work aims to improve astronaut health during long-duration spaceflights, contributing to critical advancements in space medicine and benefitting humanity.

      Crew-8’s return follows the arrival of NASA’s SpaceX Crew-9 to the orbiting laboratory Sept. 29. These missions are part of NASA’s Commercial Crew Program, which provides reliable access to space, maximizing the use of the station for research and development and supporting future missions beyond low Earth orbit by partnering with private companies to transport astronauts to and from the space station. 
      Learn more about NASA’s Commercial Crew program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111 
      leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov  
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Oct 25, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew Humans in Space International Space Station (ISS) ISS Research View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A SpaceX Falcon Heavy rocket with the Europa Clipper spacecraft aboard is seen at Launch Complex 39A as preparations continue for the mission, Sunday, Oct. 13, at NASA’s Kennedy Space Center in Florida. NASA Find details about the launch sequences for the orbiter, which is targeting an Oct. 14 liftoff on its mission to search for ingredients of life at Jupiter’s moon Europa.
      In less than 24 hours, NASA’s Europa Clipper spacecraft is slated to launch from the agency’s Kennedy Space Center in Florida aboard a Falcon Heavy rocket. Its sights are set on Jupiter’s ice-encased moon Europa, which the spacecraft will fly by 49 times, coming as close as 16 miles (25 kilometers) from the surface as it searches for ingredients of life. 
      Launch is set for 12:06 p.m. EDT on Monday, Oct. 14, with additional opportunities through Nov 6. Each opportunity is instantaneous, meaning there is only one exact time per day when launch can occur. Plans to launch Europa Clipper on Oct. 10 were delayed due to impacts of Hurricane Milton.
      NASA’s Europa Clipper is the first mission dedicated to studying Jupiter’s icy moon Europa, one of the most promising places in our solar system to find an environment suitable for life outside of Earth. With its massive solar arrays extended, Europa Clipper could span a basketball court (100 feet, or 30.5 meters, tip to tip). In fact, it’s the largest spacecraft NASA has ever built for a planetary mission. The journey to Jupiter is a long one — 1.8 billion miles (2.9 billion kilometers) — and rather than taking a straight path there, Europa Clipper will loop around Mars and then Earth, gaining speed as it swings past.
      The spacecraft will begin orbiting Jupiter in April 2030, and in 2031 it will start making those 49 science-focused flybys of Europa while looping around the gas giant. The orbit is designed to maximize the science Europa Clipper can conduct and minimize exposure to Jupiter’s notoriously intense radiation.
      But, of course, before any of that can happen, the spacecraft has to leave Earth behind. The orbiter’s solar arrays are folded and stowed for launch. Testing is complete on the spacecraft’s various systems and its payload of nine science instruments and a gravity science investigation. Loaded with over 6,060 pounds (2,750 kilograms) of the propellant that will get Europa Clipper to Jupiter, the spacecraft has been encapsulated in the protective nose cone, or payload fairing, atop a SpaceX Falcon Heavy rocket, which is poised for takeoff from historic Launch Complex 39A.
      Launch Sequences
      The Falcon Heavy has two stages and two side boosters. After the side boosters separate, the core stage will be expended into the Atlantic Ocean. Then the second stage of the rocket, which will help Europa Clipper escape Earth’s gravity, will fire its engine.
      Technicians encapsulated NASA’s Europa Clipper spacecraft inside payload fairings on Wednesday, Oct. 2, at NASA’s Kennedy Space Center in Florida. The fairings will protect the spacecraft during launch as it begins its journey to explore Jupiter’s icy moon Europa. NASA/Ben Smegelsky Once the rocket is out of Earth’s atmosphere, about 50 minutes after launch, the payload fairing will separate from its ride, split into two halves, and fall safely back to Earth, where it will be recovered and reused. The spacecraft will then separate from the upper stage about an hour after launch. Stable communication with the spacecraft is expected by about 19 minutes after separation from the rocket, but it could take somewhat longer.
      About three hours after launch, Europa Clipper will deploy its pair of massive solar arrays, one at a time, and direct them at the Sun.
      Mission controllers will then begin to reconfigure the spacecraft into its planned operating mode. The ensuing three months of initial checkout include a commissioning phase to confirm that all hardware and software is operating as expected.
      While Europa Clipper is not a life-detection mission, it will tell us whether Europa is a promising place to pursue an answer to the fundamental question about our solar system and beyond: Are we alone?
      Scientists suspect that the ingredients for life — water, chemistry, and energy — could exist at the moon Europa right now. Previous missions have found strong evidence of an ocean beneath the moon’s thick icy crust, potentially with twice as much liquid water as all of Earth’s oceans combined. Europa may be home to organic compounds, which are essential chemical building blocks for life. Europa Clipper will help scientists confirm whether organics are there, and also help them look for evidence of energy sources under the moon’s surface.
      This artist’s concept depicts NASA’s Europa Clipper spacecraft in orbit at Jupiter as it passes over the gas giant’s icy moon Europa (lower right). Scheduled to arrive at Jupiter in April 2030, the mission will be the first to specifically target Europa for detailed science investigation. NASA/JPL-Caltech More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland; NASA’s Marshall Space Flight Center in Huntsville, Alabama; and NASA’s Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.
      NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft, which will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy.
      Find more information about Europa here:
      europa.nasa.gov
      8 Things to Know About Europa Clipper Europa Clipper Teachable Moment NASA’s Europa Clipper Gets Its Giant Solar Arrays Kids Can Explore Europa With NASA’s Space Place Get the Europa Clipper Press Kit News Media Contacts
      Meira Bernstein / Karen Fox
      NASA Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / karen.c.fox@nasa.gov
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      2024-139
      Share
      Details
      Last Updated Oct 13, 2024 Related Terms
      Europa Clipper Astrobiology Europa Jet Propulsion Laboratory Jupiter Jupiter Moons Explore More
      6 min read Can Life Exist on an Icy Moon? NASA’s Europa Clipper Aims to Find Out
      Article 16 hours ago 4 min read First Greenhouse Gas Plumes Detected With NASA-Designed Instrument
      Article 3 days ago 5 min read Does Distant Planet Host Volcanic Moon Like Jupiter’s Io?
      Article 3 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...