Jump to content

NASA to Announce Major Eco-Friendly Aviation Project Update


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA and Boeing welcomed Starliner back to Earth following the uncrewed spacecraft’s successful landing at 10:01 p.m. MDT Sept. 6, 2024, at the White Sands Space Harbor in New Mexico. Credit: NASA NASA and Boeing safely returned the uncrewed Starliner spacecraft following its landing at 10:01 p.m. MDT Sept. 6 at White Sands Space Harbor in New Mexico, concluding a three-month flight test to the International Space Station.
      “I am extremely proud of the work our collective team put into this entire flight test, and we are pleased to see Starliner’s safe return,” said Ken Bowersox, associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington. “Even though it was necessary to return the spacecraft uncrewed, NASA and Boeing learned an incredible amount about Starliner in the most extreme environment possible. NASA looks forward to our continued work with the Boeing team to proceed toward certification of Starliner for crew rotation missions to the space station.”
      The flight on June 5 was the first time astronauts launched aboard the Starliner. It was the third orbital flight of the spacecraft, and its second return from the orbiting laboratory. Starliner now will ship to NASA’s Kennedy Space Center in Florida for inspection and processing.
      NASA’s Commercial Crew Program requires a spacecraft to fly a crewed test flight to prove the system is ready for regular flights to and from the orbiting laboratory. Following Starliner’s return, the agency will review all mission-related data.
      “We are excited to have Starliner home safely. This was an important test flight for NASA in setting us up for future missions on the Starliner system,” said Steve Stich, manager of NASA’s Commercial Crew Program. “There was a lot of valuable learning that will enable our long-term success. I want to commend the entire team for their hard work and dedication over the past three months.”
      NASA astronauts Butch Wilmore and Suni Williams launched on June 5 aboard Starliner for the agency’s Boeing Crewed Flight Test from Cape Canaveral Space Force Station in Florida. On June 6, as Starliner approached the space station, NASA and Boeing identified helium leaks and experienced issues with the spacecraft’s reaction control thrusters. Following weeks of in-space and ground testing, technical interchange meetings, and agency reviews, NASA made the decision to prioritize safety and return Starliner without its crew. Wilmore and Williams will continue their work aboard station as part of the Expedition 71/72 crew, returning in February 2025 with the agency’s SpaceX Crew-9 mission.
      The crew flight test is part of NASA’s Commercial Crew Program. The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the International Space Station and low Earth orbit. This already is providing additional research time and has increased the opportunity for discovery aboard humanity’s microgravity testbed, including helping NASA prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s Commercial Crew program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Sep 07, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew International Space Station (ISS) ISS Research View the full article
    • By NASA
      Artist’s rendering of NASA’s Europa Clipper spacecraft. Credit: NASA/JPL-Caltech NASA will hold a media teleconference at 4 p.m. EDT, Monday, Sept. 9, to provide an update on Europa Clipper, a mission that will study whether Jupiter’s moon Europa could be hospitable to life. The teleconference will occur after a key decision point meeting earlier that day regarding next steps for the mission.
      Audio of the teleconference will stream live on the agency’s website at:
      https://www.nasa.gov/live
      Participants in the teleconference include:
      Nicola Fox, associate administrator, Science Mission Directorate, NASA Headquarters Laurie Leshin, center director, NASA’s Jet Propulsion Laboratory Curt Niebur, Europa Clipper program scientist, NASA Headquarters Jordan Evans, Europa Clipper project manager, NASA’s Jet Propulsion Laboratory To ask questions during the teleconference, media must RSVP no later than two hours before the event to Molly Wasser at: molly.l.wasser@nasa.gov. NASA’s media accreditation policy is available online.
      Europa Clipper’s main science goal is to determine whether there are places below the surface of Jupiter’s icy moon that could support life. The mission’s objectives are to understand the nature of Europa’s ice shell and the ocean beneath it, as well as to study the moon’s composition and geology. A detailed exploration of Europa also will help astrobiologists better understand the potential for habitable worlds beyond our planet.
      To learn more about Europa Clipper, visit: 
      https://europa.nasa.gov
      -end- 
      Karen Fox / Molly Wasser
      Headquarters, Washington 
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-6215
      gretchen.p.mccartney@jpl.nasa.gov
      Share
      Details
      Last Updated Sep 06, 2024 LocationNASA Headquarters Related Terms
      Europa Clipper Jupiter Science Mission Directorate View the full article
    • By NASA
      4 Min Read Eclipses Create Atmospheric Gravity Waves, NASA Student Teams Confirm
      In this photo taken from the International Space Station, the Moon passes in front of the Sun casting its shadow, or umbra, and darkening a portion of the Earth's surface above Texas during the annular solar eclipse Oct. 14, 2023. Credits: NASA Student teams from three U.S. universities became the first to measure what scientists have long predicted: eclipses can generate ripples in Earth’s atmosphere called atmospheric gravity waves. The waves’ telltale signature emerged in data captured during the North American annular solar eclipse on Oct. 14, 2023, as part of the Nationwide Eclipse Ballooning Project (NEBP) sponsored by NASA.
      Through NEBP, high school and university student teams were stationed along the eclipse path through multiple U.S. states, where they released weather balloons carrying instrument packages designed to conduct engineering studies or atmospheric science. A cluster of science teams located in New Mexico collected the data definitively linking the eclipse to the formation of atmospheric gravity waves, a finding that could lead to improved weather forecasting.
      “Climate models are complicated, and they make some assumptions about what atmospheric factors to take into account.”
      Angela Des Jardins
      Director of the Montana Space Grant Consortium, which led NEBP.
      “Understanding how the atmosphere reacts in the special case of eclipses helps us better understand the atmosphere, which in turn helps us make more accurate weather predictions and, ultimately, better understand climate change.”
      Catching Waves in New Mexico
      Previous ballooning teams also had hunted atmospheric gravity waves during earlier eclipses, research that was supported by NASA and the National Science Foundation. In 2019, an NEBP team stationed in Chile collected promising data, but hourly balloon releases didn’t provide quite enough detail. Attempts to repeat the experiment in 2020 were foiled by COVID-19 travel restrictions in Argentina and a heavy rainstorm that impeded data collection in Chile.
      Project leaders factored in these lessons learned when planning for 2023, scheduling balloon releases every 15 minutes and carefully weighing locations with the best potential for success.
      “New Mexico looked especially promising,” said Jie Gong, a researcher in the NASA Climate and Radiation Lab at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, and co-investigator of the research on atmospheric gravity waves. “The majority of atmospheric gravity sources are convection, weather systems, and mountains. We wanted to eliminate all those possible sources.”
      The project created a New Mexico “supersite” in the town of Moriarty where four atmospheric science teams were clustered: two from Plymouth State University in Plymouth, New Hampshire, and one each from the State University of New York (SUNY) Albany and SUNY Oswego.
      Students began launching balloons at 10 a.m. the day before the eclipse.
      “They worked in shifts through the day and night, and then everyone was on site for the eclipse,” said Eric Kelsey, research associate professor at Plymouth State and the NEBP northeast regional lead.
      “Our hard work really paid off. The students had a real sense of accomplishment.”
      Eric Kelsey
      Research Associate Professor at Plymouth State and the NEBP Northeast Regional Lead.
      Each balloon released by the science teams carried a radiosonde, an instrument package that measured temperature, location, humidity, wind direction, and wind speed during every second of its climb through the atmosphere. Radiosondes transmitted this stream of raw data to the team on the ground. Students uploaded the data to a shared server, where Gong and two graduate students spent months processing and analyzing it.
      Confirmation that the eclipse had generated atmospheric gravity waves in the skies above New Mexico came in spring 2024.
      “We put all the data together according to time, and when we plotted that time series, I could already see the stripes in the signal,” Gong said. “I bombarded everybody’s email. We were quite excited.”
      Plymouth State University students Sarah Brigandi, left, and Sammantha Boulay release a weather balloon from Moriarty, New Mexico, to collect atmospheric data on Oct. 14, 2023.NASA For Students, Learning Curves Bring Opportunity
      The program offered many students their first experience in collecting data. But the benefits go beyond technical and scientific skill.
      “The students learned a ton through practicing launching weather balloons,” Kelsey said. “It was a huge learning curve. They had to work together to figure out all the logistics and troubleshoot. It’s good practice of teamwork skills.”
      “All of this is technically complicated,” Des Jardins said. “While the focus now is on the science result, the most important part is that it was students who made this happen.”
      NASA’s Science Mission Directorate Science Activation program funds NEBP, along with contributions from the National Space Grant College and Fellowship Project and support from NASA’s Balloon Program Office.
      Learn More:
      Montana State-led ballooning project confirms hypothesis about eclipse effects on atmosphere
      Nationwide Eclipse Ballooning Project
      NASA Selects Student Teams for High-Flying Balloon Science
      NASA Science Activation
      NASA Space Grant
      Explore More
      2 min read Leveraging Teacher Leaders to Share the Joy of NASA Heliophysics
      Many teachers are exceptionally skilled at bridging students’ interests with real-world science. Now for the…
      Article 22 hours ago 9 min read Proyecto de la NASA en Puerto Rico capacita a estudiantes en biología marina
      Article 2 days ago 2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects
      On August 13, 2024, the publishers of the journal Insects notified authors of three papers…
      Article 2 days ago View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A National Advisory Committee for Aeronautics researcher notes the conditions on the P-39L after its first test run in the Icing Research Tunnel on Sept. 13, 1944. The aircraft was too large to fit in the test section, so it was installed downstream in a larger area of the tunnel. The initial tests analyzed ice buildup on the nose, propeller blades, and antennae. In the summer of 1945, the P-39L was used to demonstrate the effectiveness of a thermal pneumatic boot ice-prevention system and heated propeller blades.Credit: NASA On Sept. 13, 1944, researchers subjected a Bell P-39L Airacobra to frigid temperatures and a freezing water spray in the National Advisory Committee for Aeronautics (NACA)’s new Icing Research Tunnel (IRT) to study inflight ice buildup. Since that first run at the Aircraft Engine Research Laboratory (now NASA’s Glenn Research Center) in Cleveland, the facility has operated on a regular basis for 80 years and remains the oldest and one of the largest icing tunnels in the world.
      Water droplets in clouds can freeze on aircraft surfaces in certain atmospheric conditions. Ice buildup on the forward edges of wings and tails causes significant decreases in lift and rapid increases in drag. Ice can also block engine intakes and add weight. NASA has a long tradition of working to understand the conditions that cause icing and developing systems that prevent and remove ice buildup.
      The NACA decided to build its new icing tunnel adjacent to the lab’s Altitude Wind Tunnel to take advantage of its powerful cooling equipment and unprecedented refrigeration system. The system, which can reduce air temperature to around –30 degrees Fahrenheit, produces realistic and repeatable icing conditions using a spray nozzle system that creates small, very cold droplets and a drive fan that generates airspeeds up to 374 miles per hour.
      View upstream of the Icing Research Tunnel’s 25-foot-diameter drive fan in 1944. The original 12-bladed wooden fan and its 4,100-horsepower motor could produce air speeds up to 300 miles per hour. The motor and fan were replaced in 1987 and 1993, respectively.Credit: NASA Two rudimentary icing tunnels had briefly operated at the NACA’s Langley Memorial Aeronautical Laboratory in Hampton, Virginia, but icing research primarily relied on flight testing. The sophisticated new tunnel in Cleveland offered a safer way to study icing physics, test de-icing systems, and develop icing instrumentation.
      During World War II, inlet icing was a key contributor to the heavy losses suffered by C-46s flying supply missions to allied troops in China. In February 1945, a large air scoop from the C-46 Commando was installed in the tunnel, where researchers determined the cause of the issue and redesigned the scoop to prevent freezing water droplets entering. The modifications were later incorporated into the C–46 and Convair C–40.
      A National Advisory Committee for Aeronautics engineer experiments with an Icing Research Tunnel water spray system design in September 1949. Researchers used data taken from research flights to determine the proper droplet sizes. The atomizing spray system was perfected in 1950.Credit: NASA Despite these early successes, NACA engineers struggled to improve the facility’s droplet spray system because of a lack of small nozzles able to produce sufficiently small droplets. After years of dogged trial and error, the breakthrough came in 1950 with an 80-nozzle system that produced the uniform microscopic droplets needed to properly simulate a natural icing cloud. 
      Usage of the IRT increased in the 1950s, and the controlled conditions produced by the facility helped researchers define specific atmospheric conditions that produce icing. The Civil Aeronautics Authority (the precursor to the Federal Aviation Administration) used this data to establish regulations for all-weather aircraft. The facility also contributed to new icing protections for antennae and jet engines and the development of cyclical heating de-icing systems.
      The success of the NACA’s icing program, along with the increased use of jet engines – which permitted cruising above the weather – reduced the need for additional icing research. In early 1957, just before the NACA transitioned to NASA, the center’s icing program was terminated. Nonetheless, the IRT remained active throughout the 1960s and 1970s supporting industry testing.
      The Icing Research Tunnel is highlighted in this 1973 aerial photograph. The larger Altitude Wind Tunnel (AWT) is located behind it, and the Refrigeration Building that supported both tunnels is immediately to the left of the AWT.Credit: NASA By the mid-1970s, new icing issues were arising due to the increased use of helicopters, regional airliners, and general aviation aircraft. The center held an icing workshop in July 1978 where over 100 icing experts from across the world converged and lobbied for a reinstatement of NASA’s icing research program.
      The agency agreed to provide funding to support a small team of researchers and increase operation of the icing facility. In 1982, a deadly icing-related airline crash spurred NASA to bring back a full-fledged icing research program.
      Nearly all the tunnel’s major components were subsequently upgraded. Use of the IRT skyrocketed, and there was at least a one-year wait for new tests during this period. In 1988, the facility operated more hours than any year since 1950.
      This model was installed in the Icing Research Tunnel in 2023 as part of the Advanced Air Mobility Rotor Icing Evaluation Study, which sought to refine testing of rotating models in the tunnel, validate 3D computational models, and study propeller icing issues.Credit: NASA The facility was used in a complementary way with the Twin Otter aircraft and computer simulation to improve de-icing systems, predictive tools, and instrumentation. IRT testing also accelerated the all-weather certification of the OH-60 Black Hawk helicopter. In the 1990s, the icing program turned its attention to combatting super-cooled large droplets, which can cause ice buildup in areas not protected by leading edge de-icing systems, and tailplane icing, which can cause commuter aircraft to pitch forward.
      The IRT was one of the busiest facilities at the center in the 2000s and continues to maintain a steady test schedule today, investigating icing on turbofan engines and propellers, refining testing of rotating models, validating 3D models, and much more. The IRT been used to develop nearly every modern ice protection system, provided key icing environment data to regulatory agencies, and validated leading ice prediction software. After 80 years, it remains a critical tool for sustaining NASA’s leadership in the icing field.
      More Resources:
      “We Freeze to Please”: A History of NASA’s Icing Research Tunnel and the Quest for Flight Safety Icing Research Tunnel Website International Historic Mechanical Engineering Landmark NASA Glenn’s Aeronautics Research NASA’s Aeronautics Research Mission Directorate Explore More
      4 min read Research Plane Dons New Colors for NASA Hybrid Electric Flight Tests 
      Article 1 day ago 8 min read 40 Years Ago: STS-41D – First Flight of Space Shuttle Discovery
      Article 2 days ago 6 min read 235 Years Ago: Herschel Discovers Saturn’s Moon Enceladus
      Article 7 days ago View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Students take a tour of NASA Glenn’s Telescience Support Center, where researchers operate International Space Station experiments. Credit: NASA/Jef Janis School is back in session, and the joy of learning is back on students’ minds. Teachers and parents seeking ways to extend students’ academic excitement outside of the classroom should know NASA’s Glenn Research Center in Cleveland offers various opportunities to engage with NASA.
      NASA educators encourage Ohio students and teachers to take part in the incredible space and aeronautics research happening right in their backyards.

      “We have lofty goals to send the first woman and first person of color to the Moon, on to Mars, and beyond. To get there, we’ll need all the creativity and talent available to us,” said Darlene Walker, Glenn’s Office of STEM Engagement director. “We offer programs, events, and experiences at Glenn to inspire and attract students to NASA careers.”
      Throughout the year, NASA Glenn offers in-person and virtual events for students and schools.
      6 Ways Students Can Engage With NASA Glenn
      One-day events are open to students and teachers who are U.S. citizens as well as Ohio schools or other youth-serving organizations. Registration generally opens one to two months prior to the event. “Event dates may be subject to change. Check the Glenn STEM Engagement webpage for the most up-to-date information.”
      Events are designed to inspire students and spark their interest in STEM fields. These events feature NASA experts, engaging STEM activities, and tours of Glenn facilities.
      1. High School Shadowing Days | High school students

      Offered in fall and spring, this one-day event allows high school students to explore career opportunities in STEM, as well as business.
      Fall Event Date – Nov. 14, 2024
      Registration Opens – Sept. 16, 2024
      Spring Event Date – May 15, 2025
      Registration Opens – March 14, 2025
      2. Girls in STEM | 5-8th grade students

      To inspire an interest in STEM fields among middle school students, Girls in STEM features female Glenn employees, STEM activities, and tours of center facilities.
      Event Date – April 10, 2025
      Registration Opens – Feb. 10, 2025
      3. Aviation Day | Middle and high school students

      This one-day event celebrates advancements in aviation and encourages middle and high school students’ interest in aeronautics.
      Event Date – Aug. 28, 2025
      Registration Opens – June 27, 2025
      4. TECH Day | Middle school students

      TECH is short for Tours of NASA, Engineering challenge, Career exploration, and Hands-on activity. This event includes tours of center facilities, a student engineering design challenge, and career exploration opportunities.
      Event Date – May 1, 2025
      Registration Opens – Feb. 28, 2025
      5. Manufacturing Day | High school students

      Manufacturing Day aims to educate high school students about careers in the manufacturing field while encouraging an interest in STEM. Students will see how teams of engineers, researchers, and technicians work together to design and prototype aeronautics and space hardware.
      Event Date – Sept. 18, 2025
      Registration Opens – July 18, 2025
      6. NASA STEM Kids Virtual Events | K-4th grade students

      These virtual events are designed to engage kindergarten through fourth grade students by sharing the excitement of NASA’s missions of exploration and discovery through virtual tours, conversations with NASA experts, and hands-on activities.
      Event Dates – Dec. 5, 2024; March 8, 2025; June 7, 2025; and Sept. 13, 2025
      Registration Opens – 60 days prior to each event
      “Through these opportunities, we want students to see astronauts, scientists, engineers, and role models who look like them and grew up like them work toward NASA’s missions and goals,” Walker said. “We hope they see themselves achieving these things too. We have all kinds of careers at NASA. Any career you can find outside of NASA, you can find here as well.”

      Additional programs and projects
      Glenn offers additional programs and projects for schools, teachers, and students looking for other ways to engage with NASA:
      High School Capstones Glenn Engineering Design Challenges MUREP Precollege Summer Institute MUREP Aerospace Academy For more information about these opportunities, reach out the NASA contact listed on the correlating web page.
      Learn more about NASA’s Office of STEM Engagement.

      Jacqueline Minerd 
      NASA’s Glenn Research Center 
      View the full article
  • Check out these Videos

×
×
  • Create New...