Jump to content

Recommended Posts

Posted
A Space Delta 5 (DEL 5) Intelligence, Surveillance and Reconnaissance Division (ISRD) operations superintendent recently was notified of their accomplishment of winning the William O. Studeman award early this month. The winner, U.S. Space Force Master Sgt. Josef Margetiak, was selected for this award amongst early- and mid-career military members across the DoD for his contributions over the last 3-to-5 years to his unit’s mission, intelligence and national security communities, and national level impacts.
U.S. Space Force Master Sgt. Josef Margetiak, Space Delta 5 Intelligence, Surveillance and Reconnaissance Division operations superintendent, stand in from of the Combined Force Space Component Command building at Vandenberg Space Force Base, Calif., Dec. 16, 2022. Margetiak was selected for the William O. Studeman military award which recognizes early- and mid-career military members across the DoD for their contributions over the last 3-to-5 years to their unit’s mission, intelligence and national security communities, and national level impacts. (U.S. Space Force photo by Tech. Sgt. Luke Kitterman)

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      El avión de investigación supersónico silencioso X-59 de la NASA se encuentra en una rampa de Lockheed Martin Skunk Works en Palmdale, California, durante el atardecer. Esta aeronave única en su tipo es propulsada por un motor General Electric F414, una variante de los motores utilizados en los aviones F/A-18. El motor está montado sobre el fuselaje para reducir la cantidad de ondas de choque que llegan al suelo. El X-59 es la pieza central de la misión Quesst de la NASA, que busca demostrar el vuelo supersónico silencioso y permitir futuros viajes comerciales sobre tierra – más rápidos que la velocidad del sonido.Lockheed Martin Corporation/Garry Tice El avión de investigación supersónico silencioso X-59 de la NASA se encuentra en una rampa de Lockheed Martin Skunk Works en Palmdale, California, durante el atardecer. Esta aeronave única en su tipo es propulsada por un motor General Electric F414, una variante de los motores utilizados en los aviones F/A-18. El motor está montado sobre el fuselaje para reducir la cantidad de ondas de choque que llegan al suelo. El X-59 es la pieza central de la misión Quesst de la NASA, que busca demostrar el vuelo supersónico silencioso y permitir futuros viajes comerciales sobre tierra – más rápidos que la velocidad del sonido.Lockheed Martin Corporation/Garry Tice Read this story in English here.
      El equipo detrás del X-59 de la NASA completó en marzo otra prueba crítica en tierra, garantizando que el silencioso avión supersónico será capaz de mantener una velocidad específica durante su funcionamiento. Esta prueba, conocida como mantenimiento automático de velocidad del motor, es el más reciente marcador de progreso a medida que el X-59 se acerca a su primer vuelo este año. 
      “El mantenimiento automático de la velocidad del motor es básicamente la versión de control de crucero de la aeronave,” explicó Paul Dees, jefe adjunto de propulsión de la NASA del X-59 en el Centro de Investigación de Vuelo Armstrong de la agencia en Edwards, California. “El piloto activa el control de velocidad a su velocidad actual y luego puede aumentarla o ajustarla gradualmente según sea necesario.” 
      El equipo del X-59 ya había realizado una prueba similar en el motor, pero sólo como un sistema aislado. La prueba de marzo verificó que la retención de velocidad funciona correctamente tras su integración en la aviónica de la aeronave. 
      “Necesitábamos verificar que el mantenimiento automático de velocidad funcionara no sólo dentro del propio motor, sino como parte de todo el sistema del avión,” explicó Dees. “Esta prueba confirmó que todos los componentes – software, enlaces mecánicos y leyes de control – funcionan juntos según lo previsto.” 
      El éxito de la prueba confirmó la habilidad de la aeronave para controlar la velocidad con precisión, lo cual será muy invaluable durante el vuelo. Esta capacidad aumentará la seguridad de los pilotos, permitiéndoles enfocarse en otros aspectos críticos de la operación de vuelo. 
      “El piloto va a estar muy ocupado durante el primer vuelo, asegurándose de que la aeronave sea estable y controlable,” dijo Dees. “Al tener la función del mantenimiento automático de velocidad, de reduce parte de esa carga de trabajo, lo que hace que el primer vuelo sea mucho más seguro.” 
      Inicialmente el equipo tenía planeado comprobar el mantenimiento automático de velocidad como parte de una próxima serie de pruebas en tierra donde alimentarían la aeronave con un sólido conjunto de datos para verificar su funcionalidad tanto en condiciones normales como de fallo, conocidas como pruebas de pájaro de aluminio (una estructura que se utiliza para probar los sistemas de una aeronave en un laboratorio, simulando un vuelo real). Sin embargo, el equipo se dio cuenta que había una oportunidad de probarlo antes. 
      “Fue un objetivo de oportunidad,” dijo Dees. “Nos dimos cuenta de que estábamos listos para probar el mantenimiento automático de velocidad del motor por separado mientras otros sistemas continuaban con la finalización de su software. Si podemos aprender algo antes, siempre es mejor.” 
      Con cada prueba exitosa, el equipo integrado de la NASA y Lockheed Martin acerca el X-59 al primer vuelo, y hacer historia en la aviación a través de su tecnología supersónica silenciosa. 
      Artículo Traducido por: Priscila Valdez
      Share
      Details
      Last Updated Mar 31, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
      Aeronáutica NASA en español Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      The European Space Agency (ESA) has powered down its Gaia spacecraft after more than a decade spent gathering data that are now being used to unravel the secrets of our home galaxy.
      On 27 March 2025, Gaia’s control team at ESA’s European Space Operations Centre carefully switched off the spacecraft’s subsystems and sent it into a ‘retirement orbit’ around the Sun.
      Though the spacecraft’s operations are now over, the scientific exploitation of Gaia’s data has just begun.
      View the full article
    • By NASA
      The innovative team of engineers and scientists from NASA, the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, and more than 40 other partner organizations across the country that created the Parker Solar Probe mission has been awarded the 2024 Robert J. Collier Trophy by the National Aeronautic Association (NAA). This annual award recognizes the most exceptional achievement in aeronautics and astronautics in America with respect to improving the performance, efficiency, and safety of air or space vehicles in the previous year.   
      “Congratulations to the entire Parker Solar Probe team for this well-earned recognition,” said NASA acting Administrator Janet Petro. “This mission’s trailblazing research is rewriting the textbooks on solar science by going to a place no human-made object has ever been and advancing NASA’s efforts to better understand our solar system and the Sun’s influence, with lasting benefits for us all. As the first to touch the Sun and fastest human-made object ever built, Parker Solar Probe is a testament to human ingenuity and discovery.”
      An artist’s concept of NASA’s Parker Solar Probe. NASA On Dec. 24, 2024, Parker Solar Probe made its closest approach to the Sun, passing deep within the Sun’s corona, just 3.8 million miles above the Sun’s surface and at a top speed of close to 430,000 mph, ushering in a new era of scientific discovery and space exploration.
      “This award is a recognition of the unrelenting dedication and hard work of the Parker Solar Probe team. I am so proud of this team and honored to have been a part of it,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington. “By studying the Sun closer than ever before, we continue to advance our understanding of not only our closest star, but also stars across our universe. Parker Solar Probe’s historic close approaches to the Sun are a testament to the incredible engineering that made this record-breaking journey possible.”
      Three novel aerospace technology advancements were critical to enabling this record performance: The first is the Thermal Protection System, or heat shield, that protects the spacecraft and is built to withstand brutal temperatures as high as 2,500 degrees Fahrenheit. The Thermal Protection System allows Parker’s electronics and instruments to operate close to room temperature.
      Additional Parker innovations included first-of-their-kind actively cooled solar arrays that protect themselves from overexposure to intense solar energy while powering the spacecraft, and a fully autonomous spacecraft system that can manage its own flight behavior, orientation, and configuration for months at a time. Parker has relied upon all of these vital technologies every day since its launch almost seven years ago, in August 2018.
      “I am thrilled for the Parker Solar Probe team on receiving this well-deserved award,” said Joe Westlake, director of the Heliophysics Division at NASA Headquarters. “The new information about the Sun made available through this mission will improve our ability to prepare for space weather events across the solar system, as well as better understand the very star that makes life possible for us on Earth.”
      Parker’s close-up observations of solar events, such as coronal mass ejections and solar particle events, are critical to advancing our understanding of the science of our Sun and the phenomena that drive high-energy space weather events that pose risks to satellites, air travel, astronauts, and even power grids on Earth. Understanding the fundamental physics behind events which drive space weather will enable more reliable predictions and lower astronaut exposure to hazardous radiation during future deep space missions to the Moon and Mars.
      “This amazing team brought to life an incredibly difficult space science mission that had been studied, and determined to be impossible, for more than 60 years. They did so by solving numerous long-standing technology challenges and dramatically advancing our nation’s spaceflight capabilities,” said APL Director Ralph Semmel. “The Collier Trophy is well-earned recognition for this phenomenal group of innovators from NASA, APL, and our industry and research partners from across the nation.”
      First awarded in 1911, the Robert J. Collier Trophy winner is selected by a group of aviation leaders chosen by the NAA. The Collier Trophy is housed in the Smithsonian’s National Air and Space Museum in Washington.
      “Traveling three times closer to the Sun and seven times faster than any spacecraft before, Parker’s technology innovations enabled humanity to reach inside the Sun’s atmosphere for the first time,” said Bobby Braun, head of APL’s Space Exploration Sector. “We are all immensely proud that the Parker Solar Probe team will join a long legacy of prestigious aerospace endeavors that redefined technology and changed history.”
      “The Parker Solar Probe team’s achievement in earning the 2024 Collier is a shining example of determination, genius, and teamwork,” said NAA President and CEO Amy Spowart. “It’s a distinct honor for the NAA to acknowledge and celebrate the remarkable team that turned the impossible into reality.”
      Parker Solar Probe was developed as part of NASA’s Living With a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living With a Star program is managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. The Applied Physics Laboratory designed, built, and operates the spacecraft and manages the mission for NASA.
      By Geoff Brown
      Johns Hopkins University Applied Physics Laboratory
      Share








      Details
      Last Updated Mar 25, 2025 Editor Sarah Frazier Contact Abbey Interrante abbey.a.interrante@nasa.gov Location Goddard Space Flight Center Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division Parker Solar Probe (PSP) The Sun Explore More
      5 min read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun


      Article


      3 months ago
      4 min read Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass


      Article


      5 months ago
      11 min read NASA Enters the Solar Atmosphere for the First Time, Bringing New Discoveries
      A major milestone and new results from NASA’s Parker Solar Probe were announced on Dec.…


      Article


      3 years ago
      View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 3 min read
      Kaye Honored with Pecora Award
      Expanded coverage of topics from “The Editor’s Corner” in The Earth Observer
      Image. Recipient of the Pecora Individual Award: Jack A. Kaye, PhD. Image credit: Sources/Usage: Public Domain. View Media Details Jack Kaye, Associate Director for research with the Earth Science Division within NASA’s Science Mission Directorate, has received the Pecora award for his vision and creative leadership in multidisciplinary Earth science research, as well as spurring advancements in the investigator community, supporting development of sensors, and shaping NASA satellite and aircraft missions and research programs at the highest levels. 
      The William T. Pecora Award, presented annually by the U.S. Geological Survey (USGS) and NASA, honors individuals and groups who have made outstanding contributions to the field of remote sensing – advancing Earth observation and benefiting society.
      As Associate Director for research since 1999, Kaye is responsible for the research and data analysis programs for Earth System Science. He has contributed to national and international groups for decades, by serving as the NASA principal on the Subcommittee on Global Change Research in the U.S. Global Change Research Program and chairing the World Meteorological Organization Expert Team on Satellite Systems. Kaye has also served as a member of the Steering Committee for the Global Climate Observing System and on the National Research Council’s Roundtable on Science and Technology for Sustainability and the Chemical Sciences Roundtable. He also serves as NASA’s representative to the Subcommittee on Ocean Science and Technology. Kaye has devoted considerable energy toward developing early career researchers, stimulating the inclusion of a more diverse student population in science, technology, engineering, and mathematics. 
      Kaye has received numerous NASA awards, including the Distinguished Service Medal in 2022 and the Meritorious Executive in the Senior Executive Service in 2004, 2010, and 2021. He was named a Fellow by the American Meteorological Society (AMS) in 2010 and by the American Association for the Advancement of Science (AAAS) in 2014. Kaye was also elected to serve as an office of the Atmospheric and Hydrospheric Science section of the AAAS (2015–2018).
      Kaye received a Bachelor of Science degree from Adelphi University in 1976 and a Ph.D. from the California Institute of Technology in 1982. He held a post-doctoral research associateship at the U.S. Naval Research Laboratory. Kaye has published more than 50 refereed papers and contributed to numerous reports, books, and encyclopedias.
      Kaye is joined in this honor by Chuanmin Hu, Professor of optical oceanography at the University of South Florida where he leads the Optical Oceanography Lab. Hu received the Pecora Group award for his lab’s groundbreaking advancements in remote sensing and real-world applications, including the Sargassum Watch System. The William T. Pecora Award honors the memory of William T. Pecora, former Director of USGS and Under Secretary of the Interior. His early vision and support helped establish what we know today as the Landsat satellite program.
      Steve Platnick
      EOS Senior Project Scientist
      Share








      Details
      Last Updated Mar 20, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      Ohio State graduate research assistant Alec Schnabel, left, University of Wisconsin doctoral candidate James Swanke, center, and Ohio State graduate research engineer Robert Borjas conduct tests on aircraft hardware at NASA’s Electric Aircraft Testbed (NEAT). Credit: NASA/Jef Janis  Each year, Aviation Week (AW) Network recognizes a limited number of innovators who achieve extraordinary accomplishments in the global aerospace arena with AW’s prestigious Laureate Award. These innovators represent the values and vision of the global aerospace community and change the way people work and move through the world.  
      On March 6, NASA’s Glenn Research Center accepted an AW Laureate Award in commercial aviation for NASA’s Electric Aircraft Testbed (NEAT) located at NASA Glenn’s Neil Armstrong Test Facility in Sandusky, Ohio. NEAT allows government, industry, and academia to collaborate and conduct testing of high-powered electric powertrains, which generate power and propel aircraft forward. The goal is to transform commercial flight by creating more sustainable, fuel-efficient commercial aircraft.  

      NASA’s Electric Aircraft Testbed (NEAT) is located at NASA’s Glenn Research Center at Neil Armstrong Test Facility in Sandusky, Ohio.Credit: NASA/Bridget Caswell  NEAT enables ground testing of cutting-edge systems prior to experimental flight testing. As a result, researchers can troubleshoot issues that only occur at altitude and improve them earlier in the design cycle, which both accelerates the path to flight and makes it safer.  
      A number of “firsts” have been accomplished in the electric aircraft testbed.   
      NASA and GE Aerospace completed the first successful ground tests of a high-power hybrid electric aircraft propulsion system at simulated altitude in 2022.   A megawatt-class electric machine was tested at NEAT by a university team led by The Ohio State University and the University of Wisconsin, under NASA’s University Leadership Initiative.   Under the Electrified Powertrain Flight Demonstration project, magniX tested its high-power megawatt-class powertrain with a goal to achieve approximately 5% reduced fuel use.    Systems tested at NEAT from General Electric and magniX will be flown on modified passenger aircraft currently being reconfigured for flight testing.  Return to Newsletter Explore More
      1 min read NASA Glenn Experts Join Law College to Talk Human Spaceflight 
      Article 33 mins ago 2 min read NASA Releases its Spinoff 2025 Publication 
      Article 34 mins ago 1 min read NASA Glenn Welcomes Spring 2025 Interns
      Article 34 mins ago View the full article
  • Check out these Videos

×
×
  • Create New...