Members Can Post Anonymously On This Site
Amateur and Professional Astronomers Team Up to Create a Cosmological Masterpiece
-
Similar Topics
-
By NASA
Of all the possible entry points to NASA, the agency’s SkillBridge Program has been instrumental in helping servicemembers transition from the military and into civilian careers. Offered in partnership with the Department of Defense (DoD), the program enables individuals to spend their final months of military service working with a NASA office or organization. SkillBridge fellows work anywhere from 90 to 180 days, contributing their unique skillsets to the agency while building their network and knowledge.
The Johnson Space Center in Houston hosted NASA’s first SkillBridge fellow in 2019, paving the way for dozens of others to follow. SkillBridge participants are not guaranteed a job offer at the end of their fellowship, but many have gone on to accept full-time positions with NASA. About 25 of those former fellows currently work at Johnson, filling roles as varied as their military experiences.
Miguel Shears during his military service (left) and his SkillBridge fellowship at Johnson Space Center.Images courtesy of Miguel Shears Miguel Shears retired from the Marine Corps in November 2023. He ended his 30 years of service as the administration, academics, and operations chief for the Marine Corps University in Quantico, Virginia, where he was also an adjunct professor. Shears completed a SkillBridge fellowship with FOD in the summer and fall of 2023, supporting the instructional systems design team. He was hired as a full-time employee upon his military retirement and currently serves as an instructional systems designer for the Instructor Training Module, Mentorship Module, and Spaceflight Academy. He conducts training needs analysis for FOD, as well.
Ever Zavala as a flight test engineer in the U.S. Air Force (left) and as a capsule communicator in the Mission Control Center at Johnson Space Center.Images courtesy of Ever Zavala Ever Zavala was very familiar with Johnson before becoming a SkillBridge fellow. He spent the last three of his nearly 24-year Air Force career serving as the deputy director of the DoD Human Spaceflight Payloads Office at Johnson. His team oversaw the development, integration, launch, and operation of payloads hosting DoD experiments on small satellites and the International Space Station. He also became a certified capsule communicator, or capcom, in December 2022, and was the lead capcom for SpaceX’s 28th commercial resupply services mission to the orbiting laboratory.
Zavala’s SkillBridge fellowship was in Johnson’s Astronaut Office, where he worked as a capcom, capcom instructor, and an integration engineer supporting the Extravehicular Activity and Human Surface Mobility Program. He was involved in developing a training needs analysis and agency simulators for the human landing system, among other projects.
He officially joined the center team as a full-time contractor in August 2024. He is currently a flight operations safety officer within the Flight Operations Directorate (FOD) and continues to serve as a part-time capcom.
Carl Johnson with his wife during his first visit to Johnson Space Center (left) and completing some electrical work as part of his SkillBridge fellowship. Images courtesy of Carl Johnson Carl Johnson thanks his wife for helping him find a path to NASA. While she was a Pathways intern — and his girlfriend at the time — she gave him a tour of the center that inspired him to join the agency when he was ready to leave the Army. She helped connect him to one of the center’s SkillBridge coordinators and the rest is history.
Johnson was selected for a SkillBridge fellowship in the Dynamic System Test Branch. From February to June 2023, he supported development of the lunar terrain vehicle ground test unit and contributed to the Active Response Gravity Offload System (ARGOS), which simulates reduced gravity for astronaut training.
Johnson officially joined the center team as an electrical engineer in the Engineering Directorate’s Software, Robotics, and Simulation Division in September 2023. He is currently developing a new ARGOS spacewalk simulator and training as an operator and test director for another ARGOS system.
Johnson holds an electrical engineering degree from the United States Military Academy. He was on active duty in the Army for 10 years and concluded his military career as an instructor and small group leader for the Engineer Captains Career Course. In that role, he was responsible for instructing, mentoring, and preparing the next generation of engineer captains.
Kevin Quinn during his Navy service.Image courtesy of Kevin Quinn Kevin Quinn served in the Navy for 22 years. His last role was maintenance senior chief with Air Test and Evaluation Squadron 31, known as “the Dust Devils.” Quinn managed the operations and maintenance of 33 aircraft, ensuring their readiness for complex missions and contributing to developmental flight tests and search and rescue missions. He applied that experience to his SkillBridge fellowship in quality assurance at Ellington Field in 2024. Quinn worked to enhance flight safety and astronaut training across various aircraft, including the T-38, WB-57, and the Super Guppy. He has continued contributing to those projects since being hired as a full-time quality assurance employee in 2025.
Andrew Ulat during his Air Force career. Image courtesy of Andrew Ulat Andrew Ulat retired from the Air Force after serving for 21 years as an intercontinental ballistic missile launch control officer and strategic operations advisor. His last role in the military was as a director of staff at the Air Command and Staff College at Maxwell Air Force Base in Montgomery, Alabama. There he served as a graduate-level instructor teaching international security concepts to mid-level officers and civilian counterparts from all branches of the military and various federal agencies.
Ulat started his SkillBridge fellowship as an integration engineer in Johnson’s X-Lab, supporting avionics, power, and software integration for the Gateway lunar space station. Ulat transitioned directly from his fellowship into a similar full-time position at Johnson in May 2024.
Ariel Vargas receives a commendation during his Army service (left) and in his official NASA portrait. Ariel Vargas transitioned to NASA after serving for five years in the Army. His last role in the military was as a signal officer, which involved leading teams managing secure communications and network operations in dynamic and mission-critical environments in the Middle East and the United States.
Vargas completed his SkillBridge fellowship in November 2023, supporting Johnson’s Office of the Chief Information Officer (OCIO). During his fellowship, he led a center-wide wireless augmentation project that modernized Johnson’s connectivity.
He became a full-time civil servant in May 2024 and currently serves as the business operations and partnerships lead within OCIO, supporting a digital transformation initiative. In this role, he leads efforts to streamline internal business operations, manage strategic partnerships, and drive cross-functional collaboration.
“My time in the military taught me the value of service, leadership, and adaptability—qualities that I now apply daily in support of NASA’s mission,” Vargas said. “I’m proud to be part of the Johnson team and hope my story can inspire other service members considering the SkillBridge pathway.”
Explore More
3 min read Melissa Harris: Shaping NASA’s Vision for a Future in Low Earth Orbit
Article 2 days ago 5 min read Protected: Glenn Extreme Environments Rig (GEER)
Article 3 days ago 5 min read Chief Training Officer Teresa Sindelar Touches the Future of Human Spaceflight
Article 3 days ago View the full article
-
By NASA
Explore This Section Science Uncategorized NASA SCoPE Summer Symposium… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 4 min read
NASA SCoPE Summer Symposium Celebrates Early Career Scientists and Cross-Team Collaboration
From June 16–18, 2025, the NASA Science Mission Directorate Community of Practice for Education (SCoPE) Summer Symposium brought together a community of scientists, educators, and outreach professionals to celebrate and strengthen NASA’s commitment to developing its workforce and broadening participation in science.
NASA SCoPE is a NASA-funded initiative at Arizona State University that connects early career scientists with NASA Science Activation (SciAct) program teams to build capacity in science communication, community engagement, and educational outreach. Through targeted support like Seed Grants, Travel Grants, and Mission Liaison opportunities, SCoPE equips scientists with the skills and networks needed to meaningfully engage the public with NASA science.
Held in collaboration with key SciAct teams—including Infiniscope, Co-creating with Communities, NASA’s Community College Network, and NASA’s Universe of Learning—the 2025 symposium highlighted the incredible impact of SCoPE over the past four and a half years. The program has financially supported more than 100 early career scientists across a growing network of nearly 1,000 participants.
Over the course of the three-day event, 23 awardees of SCoPE Seed Grants, Travel Grants, and Mission Liaison Grants came together to share their work, connect across disciplines, and explore new avenues for collaboration. Twelve Seed Grant awardees presented their projects, illustrating the transformative power of partnerships with SciAct teams. Highlights included learning how to write for young audiences through mentorship from NASA eClips in support of the children’s book ‘Blai and Zorg Explore the Moon’, designed for elementary learners; a collaborative effort between ‘Lost City, Icy Worlds’ and OpenSpace that evolved into long-term networking and visualization opportunities; and an Antarctic research project that, through collaboration with the Ocean Community Engagement and Awareness using NASA Earth Observations and Science (OCEANOS) project and Infiniscope, both expanded training opportunities for expedition guides and brought polar science to Puerto Rican high school summer interns.
Beyond formal sessions, the symposium embraced community building through shared meals, informal networking, and hands-on experiences like a 3D planetarium show using OpenSpace software, a telescope demonstration with 30 high school students, and a screening of NASA’s Planetary Defenders documentary. Workshop topics addressed the real-world needs of early career professionals, including grant writing, logic model development, and communicating with the media.
Survey responses revealed that 95% of attendees left with a stronger sense of belonging to a community of scientists engaged in outreach. Participants reported making valuable new connections—with peers, mentors, and potential collaborators—and left inspired to try new approaches in their own work, from social media storytelling to designing outreach for hospital patients or other specialized audiences.
As one participant put it, “Seeing others so passionate about Science Communication inspired me to continue doing it in different ways… it feels like the start of a new wave.” Another attendee remarked, “I want to thank the entire team for SCoPE to even exist. It is an incredible team/program/resource and I can’t even imagine the amount of work, dedication and pure passion that has gone into this entire project over the years. Although I only found SCoPE very recently, I feel like it has been incredibly helpful in my scientific journey and I only wish I had learned of the program sooner. Thank you to the entire team for what was a truly educational and inspirational workshop, and the wonderful community that SCoPE has fostered.”
This successful event was made possible through the dedication of NASA SciAct collaborators and the leadership of SciAct Program Manager Lin Chambers, whose continued support of early career engagement through SCoPE has created a growing, connected community of science communicators. The SCoPE Summer Symposium exemplifies how cross-team collaboration and community-centered design can effectively amplify the reach of NASA science.
Learn more about how NASA’s Science Activation program connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
SCoPE-funded scientists and collaborators gather at the 2025 SCoPE Summer Symposium to celebrate program success, share ideas, build partnerships, and advance science communication and education efforts across NASA’s Science Activation program. Share
Details
Last Updated Jul 15, 2025 Editor NASA Science Editorial Team Related Terms
Opportunities For Educators to Get Involved Science Activation Science Mission Directorate Explore More
4 min read Linking Satellite Data and Community Knowledge to Advance Alaskan Snow Science
Article
1 day ago
2 min read Hubble Snaps Galaxy Cluster’s Portrait
Article
4 days ago
7 min read NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun
On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured…
Article
5 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
On June 14 and 16, technicians installed solar panels onto NASA’s Nancy Grace Roman Space Telescope, one of the final steps in assembling the observatory. Collectively called the Solar Array Sun Shield, these panels will power and shade the observatory, enabling all the mission’s observations and helping keep the instruments cool.
In this photo, technicians install solar panels onto the outer portion of NASA’s Nancy Grace Roman Space Telescope. Roman’s inner portion is in the background just left of center. By the end of the year, technicians plan to connect the two halves and complete the Roman observatory. Credit: NASA/Sydney Rohde “At this point, the observatory is about 90% complete,” said Jack Marshall, the Solar Array Sun Shield lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We just need to join two large assemblies, and then we’ll run the whole Roman observatory through a series of tests. We’re currently on track for launch several months earlier than the promised date of no later than May 2027.” The team is working toward launch as early as fall 2026.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Over the course of two days, eight technicians installed Roman's solar panels onto the outer portion of NASA's Nancy Grace Roman Space Telescope. Each of the six panels is about 23 by 33 feet (7 by 10 meters), fitted with photovoltaic cells which will harness energy from sunlight to power the observatory. The solar panels were designed, built, and installed at NASA's Goddard Space Flight Center in Greenbelt, Md.Credit: NASA/Sophia Roberts The Solar Array Sun Shield is made up of six panels, each covered in solar cells. The two central panels will remain fixed to the outer barrel assembly (the observatory’s outer shell) while the other four will deploy once Roman is in space, swinging up to align with the center panels.
The panels will spend the entirety of the mission facing the Sun to provide a steady supply of power to the observatory’s electronics. This orientation will also shade much of the observatory and help keep the instruments cool, which is critical for an infrared observatory. Since infrared light is detectable as heat, excess warmth from the spacecraft’s own components would saturate the detectors and effectively blind the telescope.
The solar panels on NASA’s Nancy Grace Roman Space Telescope are covered in a total of 3,902 solar cells that will convert sunlight directly into electricity much like plants convert sunlight to chemical energy. When tiny bits of light, called photons, strike the cells, some of their energy transfers to electrons within the material. This jolt excites the electrons, which start moving more or jump to higher energy levels. In a solar cell, excited electrons create electricity by breaking free and moving through a circuit, sort of like water flowing through a pipe. The panels are designed to channel that energy to power the observatory.Credit: NASA/Sydney Rohde “Now that the panels have been installed, the outer portion of the Roman observatory is complete,” said Goddard’s Aaron Vigil, a mechanical engineer working on the array. Next, technicians will test deploy the solar panels and the observatory’s “visor” (the deployable aperture cover). The team is also testing the core portion of the observatory, assessing the electronics and conducting a thermal vacuum test to ensure the system operates as planned in the harsh space environment.
This will keep the project on track to connect Roman’s inner and outer segments in November, resulting in a whole observatory by the end of the year that can then undergo pre-launch tests.
Now that the solar panels are installed on the outer portion of NASA’s Nancy Grace Roman Space Telescope, technicians are readying the assembly for vibration testing to ensure it will withstand the extreme shaking experienced during launch.Credit: NASA/Sydney Rohde To virtually tour an interactive version of the telescope, visit: https://roman.gsfc.nasa.gov/interactive/
Download high-resolution video and images from NASA’s Scientific Visualization Studio
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jul 10, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Dark Energy Dark Matter Goddard Space Flight Center Goddard Technology NASA Centers & Facilities Technology The Universe Explore More
6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 3 months ago 4 min read Core Components for NASA’s Roman Space Telescope Pass Major Shake Test
Article 1 month ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
Article 4 months ago View the full article
-
By NASA
Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
An Update From the 2025 Mars 2020 Science Team Meeting
A behind-the-scenes look at the annual Mars 2020 Science Team Meeting
Members of the Mars 2020 Science Team examine post-impact sediments within the Gardnos impact structure, northwest of Oslo, Norway, as part of the June 2025 Science Team Meeting. NASA/Katie Stack Morgan Written by Katie Stack Morgan, Mars 2020 Acting Project Scientist
The Mars 2020 Science Team gathered for a week in June to discuss recent science results, synthesize earlier mission observations, and discuss future plans for continued exploration of Jezero’s crater rim. It was also an opportunity to celebrate what makes this mission so special: one of the most capable and sophisticated science missions ever sent to Mars, an experienced and expert Science Team, and the rover’s many science accomplishments this past year.
We kicked off the meeting, which was hosted by our colleagues on the RIMFAX team at the University of Oslo, with a focus on our most recent discoveries on the Jezero crater rim. A highlight was the team’s in-depth discussion of spherules observed at Witch Hazel Hill, features which likely provide us the best chance of determining the origin of the crater rim rock sequence.
On the second day, we heard status updates from each of the science instrument teams. We then transitioned to a session devoted to “traverse-scale” syntheses. After 4.5 years of Perseverance on Mars and more than 37 kilometers of driving (more than 23 miles), we’re now able to analyze and integrate science datasets across the entire surface mission, looking for trends through space and time within the Jezero rock record. Our team also held a poster session, which was a great opportunity for in-person and informal scientific discussion.
The team’s modern atmospheric and environmental investigations were front and center on Day 3. We then rewound the clock, hearing new and updated analyses of data acquired during Perseverance’s earlier campaigns in Jezero’s Margin unit, crater floor, and western fan. The last day of the meeting was focused entirely on future plans for the Perseverance rover, including a discussion of our exploration and sampling strategy during the Crater Rim Campaign. We also looked further afield, considering where the rover might explore over the next few years.
Following the meeting, the Science Team took a one-day field trip to visit Gardnos crater, a heavily eroded impact crater with excellent examples of impact melt breccia and post-impact sediment fill. The team’s visit to Gardnos offered a unique opportunity to see and study impact-generated rock units like those expected on the Jezero crater rim and to discuss the challenges we have recognizing similar units with the rover on Mars. Recapping our Perseverance team meetings has been one of my favorite yearly traditions (see summaries from our 2022, 2023, and 2024 meetings) and I look forward to reporting back a year from now. As the Perseverance team tackles challenges in the year to come, we can seek inspiration from one of Norway’s greatest polar explorers, Fridtjof Nansen, who said while delivering his Nobel lecture, “The difficult is that which can be done at once; the impossible is that which takes a little longer.”
Share
Details
Last Updated Jul 01, 2025 Related Terms
Blogs Explore More
2 min read Curiosity Blog, Sols 4584–4585: Just a Small Bump
Article
1 hour ago
4 min read Curiosity Blog, Sols 4582-4583: A Rock and a Sand Patch
Article
3 days ago
2 min read Curiosity Blog, Sols 4580-4581: Something in the Air…
Article
5 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Since childhood, Derrick Bailey always had an early fascination with aeronautics. Military fighter jet pilots were his childhood heroes, and he dreamed of joining the aerospace industry. This passion was a springboard into his 17-year career at NASA, where Bailey plays an important role in enabling successful rocket launches.
Bailey is the Launch Vehicle Certification Manager in the Launch Services Program (LSP) within the Space Operations Mission Directorate. In this role, he helps NASA outline the agency’s risk classifications of new rockets from emerging and established space companies.
“Within my role, I formulate a series of technical and process assessments for NASA LSP’s technical team to understand how companies operate, how vehicles are designed and qualified, and how they perform in flight,” Bailey said.
Beyond technical proficiency and readiness, a successful rocket launch relies on establishing a strong foundational relationship between NASA and the commercial companies involved. Bailey and his team ensure effective communication with these companies to provide the guidance, data, and analysis necessary to support them in overcoming challenges.
“We work diligently to build trusting relationships with commercial companies and demonstrate the value in partnering with our team,” Bailey said.
Bailey credits a stroke of fate that landed him at the agency. During his senior year at Georgia Tech, where he was pursuing a degree in aerospace engineering, Bailey almost walked past the NASA tent at a career fair. However, he decided to grab a NASA sticker and strike up a conversation, which quickly turned into an impromptu interview. He walked away that day with a job offer to work on the now-retired Space Shuttle Program at the agency’s Kennedy Space Center in Florida.
“I never imagined working at NASA,” Bailey said. “Looking back, it’s unbelievable that a chance encounter resulted in securing a job that has turned into an incredible career.”
Thinking about the future, Bailey is excited about new opportunities in the commercial space industry. Bailey sees NASA as a crucial advisor and mentor for commercial sector while using industry capabilities to provide more cost-effective access to space.
Derrick Bailey, launch vehicle certification manager for NASA’s Launch Services Program
“We are the enablers,” Bailey said of his role in the directorate. “It is our responsibility to provide the best opportunity for future explorers to begin their journey of discovery in deep space and beyond.”
Outside of work, Bailey enjoys spending time with his family, especially his two sons, who keep him busy with trips to the baseball diamond and homework sessions. Bailey also enjoys hands-on activities, like working on cars, off-road vehicles, and house projects – hobbies he picked up from his mechanically inclined father. Additionally, at the beginning of 2025, his wife accepted a program specialist position with LSP, an exciting development for the entire Bailey family.
“One of my wife’s major observations early on in my career was how much my colleagues genuinely care about one another and empower people to make decisions,” Bailey explained. “These are the things that make NASA the number one place to work in the government.”
NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the hub of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support.
To learn more about NASA’s Space Operation Mission Directorate, visit:
https://www.nasa.gov/directorates/space-operations
Share
Details
Last Updated Jun 26, 2025 Related Terms
Space Operations Mission Directorate People of Space Operations Explore More
4 min read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry
Article 1 week ago 4 min read Meet the Space Ops Team: Christine Braden
Article 1 month ago 4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
Article 2 months ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.