Jump to content

UFO emerges from ocean off Coast California


USH

Recommended Posts

A mysterious brightly glowing object moving at high speed through the water, low above the water or shallow under the water, was caught on a surveillance camera on the beach of Encinitas, California. 

ufo%20uso%20off%20coast%20California%20-%20Copy.jpg

At some point the glowing object emerges from the water followed by a bright flash and disappears into thin air. When zoomed in on the bright flash it shows a triangular UFO. 

ufo%20uso%20off%20coast%20California.png

It is again proof that UFOs disappear into the ocean, as well as take off again, especially in the area off coast California and Santa Catalina Island and San Clemente Island which islands are known for its many UFO sightings reported by the Navy and local residents over the years.

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A prototype of a robot designed to explore subsurface oceans of icy moons is reflected in the water’s surface during a pool test at Caltech in September. Conducted by NASA’s Jet Propulsion Laboratory, the testing showed the feasibility of a mission concept for a swarm of mini swimming robots.NASA/JPL-Caltech In a competition swimming pool, engineers tested prototypes for a futuristic mission concept: a swarm of underwater robots that could look for signs of life on ocean worlds.
      When NASA’s Europa Clipper reaches its destination in 2030, the spacecraft will prepare to aim an array of powerful science instruments toward Jupiter’s moon Europa during 49 flybys, looking for signs that the ocean beneath the moon’s icy crust could sustain life. While the spacecraft, which launched Oct. 14, carries the most advanced science hardware NASA has ever sent to the outer solar system, teams are already developing the next generation of robotic concepts that could potentially plunge into the watery depths of Europa and other ocean worlds, taking the science even further.
      This is where an ocean-exploration mission concept called SWIM comes in. Short for Sensing With Independent Micro-swimmers, the project envisions a swarm of dozens of self-propelled, cellphone-size swimming robots that, once delivered to a subsurface ocean by an ice-melting cryobot, would zoom off, looking for chemical and temperature signals that could indicate life.
      Dive into underwater robotics testing with NASA’s futuristic SWIM (Sensing With Independent Micro-swimmers) concept for a swarm of miniature robots to explore subsurface oceans on icy worlds, and see a JPL team testing a prototype at a pool at Caltech in Pasadena, California, in September 2024. NASA/JPL-Caltech “People might ask, why is NASA developing an underwater robot for space exploration? It’s because there are places we want to go in the solar system to look for life, and we think life needs water. So we need robots that can explore those environments — autonomously, hundreds of millions of miles from home,” said Ethan Schaler, principal investigator for SWIM at NASA’s Jet Propulsion Laboratory in Southern California.
      Under development at JPL, a series of prototypes for the SWIM concept recently braved the waters of a 25-yard (23-meter) competition swimming pool at Caltech in Pasadena for testing. The results were encouraging.
      SWIM Practice
      The SWIM team’s latest iteration is a 3D-printed plastic prototype that relies on low-cost, commercially made motors and electronics. Pushed along by two propellers, with four flaps for steering, the prototype demonstrated controlled maneuvering, the ability to stay on and correct its course, and a back-and-forth “lawnmower” exploration pattern. It managed all of this autonomously, without the team’s direct intervention. The robot even spelled out “J-P-L.”
      Just in case the robot needed rescuing, it was attached to a fishing line, and an engineer toting a fishing rod trotted alongside the pool during each test. Nearby, a colleague reviewed the robot’s actions and sensor data on a laptop. The team completed more than 20 rounds of testing various prototypes at the pool and in a pair of tanks at JPL.
      “It’s awesome to build a robot from scratch and see it successfully operate in a relevant environment,” Schaler said. “Underwater robots in general are very hard, and this is just the first in a series of designs we’d have to work through to prepare for a trip to an ocean world. But it’s proof that we can build these robots with the necessary capabilities and begin to understand what challenges they would face on a subsurface mission.”
      Swarm Science
      A model of the final envisioned SWIM robot, right, sits beside a capsule holding an ocean-composition sensor. The sensor was tested on an Alaskan glacier in July 2023 through a JPL-led project called ORCAA (Ocean Worlds Reconnaissance and Characterization of Astrobiological Analogs). The wedge-shaped prototype used in most of the pool tests was about 16.5 inches (42 centimeters) long, weighing 5 pounds (2.3 kilograms). As conceived for spaceflight, the robots would have dimensions about three times smaller — tiny compared to existing remotely operated and autonomous underwater scientific vehicles. The palm-size swimmers would feature miniaturized, purpose-built parts and employ a novel wireless underwater acoustic communication system for transmitting data and triangulating their positions.
      Digital versions of these little robots got their own test, not in a pool but in a computer simulation. In an environment with the same pressure and gravity they would likely encounter on Europa, a virtual swarm of 5-inch-long (12-centimeter-long) robots repeatedly went looking for potential signs of life. The computer simulations helped determine the limits of the robots’ abilities to collect science data in an unknown environment, and they led to the development of algorithms that would enable the swarm to explore more efficiently.
      The simulations also helped the team better understand how to maximize science return while accounting for tradeoffs between battery life (up to two hours), the volume of water the swimmers could explore (about 3 million cubic feet, or 86,000 cubic meters), and the number of robots in a single swarm (a dozen, sent in four to five waves).
      In addition, a team of collaborators at Georgia Tech in Atlanta fabricated and tested an ocean composition sensor that would enable each robot to simultaneously measure temperature, pressure, acidity or alkalinity, conductivity, and chemical makeup. Just a few millimeters square, the chip is the first to combine all those sensors in one tiny package.
      Of course, such an advanced concept would require several more years of work, among other things, to be ready for a possible future flight mission to an icy moon. In the meantime, Schaler imagines SWIM robots potentially being further developed to do science work right here at home: supporting oceanographic research or taking critical measurements underneath polar ice.
      More About SWIM
      Caltech manages JPL for NASA. JPL’s SWIM project was supported by Phase I and II funding from NASA’s Innovative Advanced Concepts (NIAC) program under the agency’s Space Technology Mission Directorate. The program nurtures visionary ideas for space exploration and aerospace by funding early-stage studies to evaluate technologies that could transform future NASA missions. Researchers across U.S. government, industry, and academia can submit proposals.
      How the SWIM concept was developed Learn about underwater robots for Antarctic climate science See NASA’s network of ready-to-roll mini-Moon rovers News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2024-162
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Europa Jet Propulsion Laboratory NASA Innovative Advanced Concepts (NIAC) Program Ocean Worlds Robotics Space Technology Mission Directorate Technology Explore More
      5 min read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      Article 1 hour ago 4 min read From Houston to the Moon: Johnson’s Thermal Vacuum Chamber Tests Lunar Solar Technology 
      Article 19 hours ago 3 min read Northwestern University Takes Top Honors in BIG Idea Lunar Inflatables Challenge 
      Article 23 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Technicians carefully install a piece of equipment to house Gateway’s xenon fuel tanks, part of its advanced electric propulsion system. Gateway’s Power and Propulsion Element, which will make the lunar space station the most powerful solar electric spacecraft ever flown, recently received the xenon and liquid fuel tanks for its journey to and around the Moon.
      Technicians in Palo Alto, California carefully install a piece of equipment that will house the tanks. Once fully assembled and launched to lunar orbit, the Power and Propulsion Element’s roll-out solar arrays – together about the size of an American football field endzone – will harness the Sun’s energy to energize xenon gas and produce the thrust to get Gateway to the Moon’s orbit where it will await the arrival of its first crew on the Artemis IV mission.
      The Power and Propulsion Element will also carry the European Radiation Sensors Array science experiment provided by ESA (European Space Agency) and JAXA (Japan Aerospace Exploration Agency), one of three Gateway science experiments that will study solar and cosmic radiation. The little understood phenomenon is a chief concern for humans and hardware journeying to deep-space destinations like Mars and beyond.
      The Power and Propulsion Element is managed out of NASA’s Glenn Research Center in Cleveland, Ohio and built by Maxar Space Systems of Palo Alto, California.
      Hardware for the Gateway space station’s Power and Propulsion element, including its primary structure and fuel tanks ready for assembly, are shown at Maxar Space Systems in Palo Alto, California.Maxar Space Systems An artist’s rendering of the Gateway space station’s Power and Propulsion Element.NASA/Alberto Bertolin A type of advanced electric propulsion system thruster that will be used on Gateway glows blue as it emits ionized xenon gas during testing at NASA’s Glenn Research Center.NASA An artist’s rendering of European Radiation Sensor Array science experiment that will study both radiation and lunar dust.  NASA Learn More About Gateway Share
      Details
      Last Updated Nov 20, 2024 ContactDylan Connelldylan.b.connell@nasa.govLocationJohnson Space Center Related Terms
      Gateway Space Station Artemis Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Glenn Research Center Johnson Space Center Explore More
      3 min read Gateway: Centering Science
      Gateway is set to advance science in deep space, bringing groundbreaking research opportunities to lunar…
      Article 3 weeks ago 1 min read Gateway Stands Tall for Stress Test
      The Gateway space station’s Habitation and Logistics Outpost has successfully completed static load testing in…
      Article 2 months ago 3 min read Gateway: Up Close in Stunning Detail
      Witness Gateway in stunning detail with this video that brings the future of lunar exploration…
      Article 5 months ago Keep Exploring Discover More Topics From NASA
      Space Launch System (SLS)
      Orion Spacecraft
      Gateway
      Human Landing System
      View the full article
    • By NASA
      MuSat2 at Vandenberg Air Force Base, prior to launch. MuSat2 leverages a dual-frequency science antenna developed with support from NASA to measure phenomena such as ocean wind speed. Muon Space A science antenna developed with support from NASA’s Earth Science Technology Office (ESTO) is now in low-Earth orbit aboard MuSat2, a commercial remote-sensing satellite flown by the aerospace company Muon Space. The dual-frequency science antenna was originally developed as part of the Next Generation GNSS Bistatic Radar Instrument (NGRx). Aboard MuSat2, it will help measure ocean surface wind speed—an essential data point for scientists trying to forecast how severe a burgeoning hurricane will become.
      “We’re very interested in adopting this technology and pushing it forward, both from a technology perspective and a product perspective,” said Jonathan Dyer, CEO of Muon.
      Using this antenna, MuSat2 will gather signals transmitted by navigation satellites as they scatter off Earth’s surface and back into space. By recording how those scattered navigation signals change as they interact with Earth’s surface, MuSat2 will provide meteorologists with data points they can use to study severe weather.
      “We use the standard GPS signals you know—the navigation signals that work for your car and your cell phone,” explained Chris Ruf, director of the University of Michigan Space Institute and principal investigator for NGRx.
      Ruf designed the entire NGRx system to be an updated version of the sensors on NASA’s Cyclone Global Navigation Satellite System (CYGNSS), another technology he developed with support from ESTO. Since 2016, data from CYGNSS has been a critical resource for people dedicated to forecasting hurricanes.
      The science antenna aboard MuSat2 enables two key improvements to the original CYGNSS design. First, the antenna allows MuSat2 to gather measurements from satellites outside the U.S.-based GPS system, such as the European Space Agency’s Galileo satellites. This capability enables MuSat2 to collect more data as it orbits Earth, improving its assessments of conditions on the planet’s surface.
      Second, whereas CYGNSS only collected cross-polar radar signals, the updated science antenna also collects co-polar radar signals. This additional information could provide improved information about soil moisture, sea ice, and vegetation. “There’s a whole lot of science value in looking at both polarization components scattering from the Earth’s surface. You can separate apart the effects of vegetation from the effects of surface, itself,” explained Ruf.
      Hurricane Ida, as seen from the International Space Station. NASA-developed technology onboard MuSat2 will help supply the U.S. Air Force with critical data for producing reliable weather forecasts. NASA For Muon Space, this technology infusion has been helpful to the company’s business and science missions. Dallas Masters, Vice President of Muon’s Signals of Opportunity Program, explains that NASA’s investments in NGRx technology made it much easier to produce a viable commercial remote sensing satellite. According to Masters, “NGRx-derived technology allowed us to start planning a flight mission early in our company’s existence, based around a payload we knew had flight heritage.”
      Dyer agrees. “The fact that ESTO proves out these measurement approaches – the technology and the instrument, the science that you can actually derive, the products from that instrument – is a huge enabler for companies like ours, because we can adopt it knowing that much of the physics risk has been retired,” he said.
      Ultimately, this advanced antenna technology for measuring ocean surface wind speed will make it easier for researchers to turn raw data into actionable science products and to develop more accurate forecasts.
      “Information is absolutely precious. When it comes to forecast models and trying to understand what’s about to happen, you have to have as good an idea as you can of what’s already happening in the real world,” said oceanographer Lew Gramer, an Associate Scientist with the Cooperative Institute For Marine And Atmospheric Studies and NOAA’s Hurricane Research Division.
      Project Lead: Chris Ruf, University of Michigan
      Sponsoring Organizations: NASA’s Earth Science Technology Office and Muon Space
      Share








      Details
      Last Updated Nov 12, 2024 Related Terms
      CYGNSS (Cyclone Global Navigation Satellite System) Earth Science Earth Science Division Earth Science Technology Office Oceans Science-enabling Technology Technology Highlights Explore More
      22 min read Summary of the Second OMI–TROPOMI Science Team Meeting


      Article


      1 hour ago
      3 min read Integrating Relevant Science Investigations into Migrant Children Education


      Article


      6 days ago
      2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow


      Article


      1 week ago
      View the full article
    • By USH
      Over the years, numerous mysterious events have been witnessed in the sky, defying explanation. Recently, yet another unusual sky phenomenon was observed over Southern Australia capturing attention and sparking curiosity. 

      Video footage reveals what appears to be a dome-shaped structure, with an even stranger detail: lightning seems to bounce off or perhaps even originate from within the dome. 
      The mysterious formation has led to numerous theories. Some viewers suggest it could be a unique (red) rainbow or a rare weather event like a haboob (sandstorm). Others speculate it might be the result of weather manipulation or even an energy field projected over the region. 

      Opinions also vary on the lightning, some say it’s bouncing off the dome, while others believe it could be emanating from within. Although it may just be an unusual natural phenomenon, the seemly strange interaction with the lightning remains unexplained.
        View the full article
    • By European Space Agency
      Image: ESA Astronaut Reserve training kicks off at EAC View the full article
  • Check out these Videos

×
×
  • Create New...