Jump to content

Recommended Posts

Posted
Reindeer taking a break

At this time of the year, the mention of Lapland conjures up visions of Santa getting his gift-laden sleigh and nine reindeer ready to take to the skies for the most important deliveries of all. However, the skies of Lapland have witnessed something rather different recently – a big white balloon, which may not provide the immediate gratification of a much-wanted Christmas present, but nonetheless plays a role in helping to safeguard our children’s future.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Step into the holidays with this picturesque ‘winter wonderland’ scene at the south pole of Mars, captured by ESA’s Mars Express.
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A scientific balloon is inflated during NASA’s 2023 Antarctic campaign in McMurdo, Antarctica. NASA/Scott Battaion NASA’s Scientific Balloon Program has returned to Antarctica’s icy expanse to kick off the annual Antarctic Long-Duration Balloon Campaign, where two balloon flights will carry a total of nine missions to near space. Launch operations will begin mid-December from the agency’s Long Duration Balloon camp located near the U.S. National Science Foundation’s McMurdo Station on the Ross Ice Shelf.
      “Antarctica is our cornerstone location for long-duration balloon missions, and we always look forward to heading back to ‘the ice,’” said Andrew Hamilton, acting chief of NASA’s Balloon Program Office at the agency’s Wallops Flight Facility in Virginia. “It’s a tremendous effort to stage a campaign like this in such a remote location, and we are grateful for the support provided to us by the U.S. National Science Foundation, New Zealand, and the U.S. Air Force.”
      This year’s Antarctic campaign includes investigations in astrophysics, space biology, heliospheric research, and upper atmospheric research, along with technology demonstrations. The campaign’s two primary missions include:
      GAPS (General Anti-Particle Spectrometer), led by Columbia University in New York, is an experiment to detect anti-matter particles produced by dark matter interactions. The anti-particles stemming from these interactions in our galaxy can only be observed from a suborbital platform or in space, since Earth’s atmosphere shields us from the cosmic radiation. GAPS aims to provide an unprecedented level of sensitivity to certain classes of anti-particles, allowing the exploration of a currently unexplored energy regime of the elusive dark matter. Salter Test Flight Universal, led by NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, will test and validate long-duration balloon and subsystems, while supporting several piggyback missions on the flight. Piggyback missions, or smaller payloads, riding along with the Salter Test Flight Universal mission include:
      MARSBOx (Microbes in Atmosphere for Radiation, Survival, and Biological Outcomes Experiments), led by the U.S. Naval Research Laboratory, will expose melanized fungus, called Aspergillus niger, to the stratosphere’s extreme radiation and temperature fluctuations, low atmospheric pressure, and absence of water — conditions much like the surface of Mars. Knowledge of how this fungus adapts to protect itself in this harsh environment could lead to the development of treatments to protect astronauts from high radiation exposure. EMIDSS-6 (Experimental Module for Iterative Design of Satellite Subsystems 6), led by National Polytechnical Institute − Mexico, is a technological platform with experimental design and operational validation of instrumentation that will collect and store data from the stratospheric environment to contribute to the study of climate change. SPARROW-6 (Sensor Package for Attitude, Rotation, and Relative Observable Winds – 6), led by NASA’s Balloon Program Office at NASA Wallops, will demonstrate relative wind measurements using an ultrasonic anemometer designed for the balloon float environment.   WALRUSS (Wallops Atmospheric Light Radiation and Ultraviolet Spectrum Sensor), led by the Balloon Program Office at NASA Wallops, is a technology demonstration of a sensor package capable of measuring the total ultraviolet wavelength spectrum and ozone concentration. INDIGO (INterim Dynamics Instrumentation for Gondolas), led by the Balloon Program Office at NASA Wallops, is a data recorder meant to measure the shock, rotation, and attitude of the gondola during the launch, float, and landing phases of flight. Data will be used to improve understanding of the dynamics of flight and to inform the design of future components and hardware. The remaining two piggyback missions are led by finalists of NASA’s FLOATing DRAGON (Formulate, Lift, Observe, And Testing; Data Recovery And Guided On-board Node) Balloon Challenge, sponsored by the Balloon Program Office at NASA Wallops and managed by the National Institute of Aerospace. The challenge was created for student teams to design, build, and fly an autonomous aerial vehicle, deployed from a gondola during a high-altitude balloon flight. The teams’ student-built data vaults will be safely dropped from around 120,000 feet with the capability to target a specific landing point on the ground to manage risk. The missions participating in the Antarctic campaign are Purdue University’s Purdue DRAGONfly, and University of Notre Dame’s IRIS v3.
      NASA’s zero-pressure balloons, used in the Antarctic campaign, are made of a thin plastic film and are capable of lifting up to 8,000 pounds of payload and equipment to altitudes above 99.8% of Earth’s atmosphere. Zero-pressure balloons, which typically have a shorter flight duration from the loss of gas during the day-to-night cycle, can support long-duration missions in polar regions during summer. The constant daylight of Antarctica’s austral summer and stable stratospheric wind conditions allow the balloon missions to remain in near space for days to weeks, gathering large amounts of scientific data as they circle the continent.
      NASA’s Long Duration Balloon camp is located about eight miles from the U.S. National Science Foundation’s McMurdo Station on Antarctica’s Ross Ice Shelf. NASA/Scott Battaion NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon flight program with 10 to 15 flights each year from launch sites worldwide. Peraton, which operates NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, provides mission planning, engineering services, and field operations for NASA’s scientific balloon program. The Columbia team has launched more than 1,700 scientific balloons over some 40 years of operations. NASA’s balloons are fabricated by Aerostar. The NASA Scientific Balloon Program is funded by the NASA Headquarters Science Mission Directorate Astrophysics Division. NASA balloon launch operations from Antarctica receive logistical support from the U.S. National Science Foundation’s Office of Polar Programs, which oversees the U.S. Antarctic Program.
      For mission tracking, click here. For more information on NASA’s Scientific Balloon Program, visit: https://www.nasa.gov/scientificballoons.
      By Olivia Littleton
      NASA’s Wallops Flight Facility, Wallops Island, Va.
      Share
      Details
      Last Updated Dec 10, 2024 EditorOlivia F. LittletonContactOlivia F. Littletonolivia.f.littleton@nasa.govLocationWallops Flight Facility Related Terms
      Scientific Balloons Astrophysics Astrophysics Division Goddard Space Flight Center Wallops Flight Facility Explore More
      7 min read NASA to Launch 8 Scientific Balloons From New Mexico
      Article 4 months ago 7 min read NASA Balloons Head North of Arctic Circle for Long-Duration Flights
      Article 7 months ago 4 min read GUSTO Breaks NASA Scientific Balloon Record for Days in Flight
      Article 10 months ago View the full article
    • By NASA
      At the edge of Las Cruces, New Mexico, surrounded by miles of sunbaked earth, NASA’s White Sands Test Facility (WSTF) is quietly shaping the future. There is no flash, no fanfare — the self-contained facility operates as it has since 1962, humbly and in relative obscurity.

      Yet as New Mexico’s space industry skyrockets amid intensifying commercial spaceflight efforts across the state, WSTF feels a new urgency to connect with the community. With the facility’s latest Test and Evaluation Support Team (TEST3) contract now in its third year, Program Manager Michelle Meerscheidt is determined to make a mark.

      “I think it’s very important we increase our public presence,” Meerscheidt said. “We are a significant contributor to NASA’s mission and our country’s aspirations for furthering space exploration.”

      In September, TEST3 leadership joined forces with the City of Las Cruces to support the sixth annual Las Cruces Space Festival, a two-weekend celebration of the region’s rich relationship with the aerospace industry.

      The Test and Evaluation Support Team (TEST3) team — Human Resources Manager Kristina Garcia (left), Program Manager Michelle Meerscheidt, and Deputy Program Manager/Business Manager Karen Lucht — prepares to meet with visitors at the Las Cruces Space Festival Astronomy & Industry Night on Sept. 13, 2024, in Las Cruces, New Mexico. NASA/Anthony Luis Quiterio Alongside WSTF, festival director Alice Carruth is working to open a world that many believe is off limits and others don’t know exists.

      “Unless you’re driving over the mountains regularly and seeing the sign that says, ‘The Birthplace of the U.S. Space and Missile Program,’ you don’t tend to know what’s going on in your backyard,”  Carruth said.

      “The whole premise of the Space Festival is to make people understand what’s going on in their community, to encourage people to think about careers in the space industry, and to inspire the next generation.”

      A featured speaker at the festival’s New Mexico State University Astronomy & Industry Night, Meerscheidt had the chance to do just that.

      “It’s fun to see a lot of young kids that are wide-eyed and excited,” Meerscheidt said. “It’s nice to be able to encourage them to pursue their dreams.”

      Among those wide-eyed festivalgoers was 6-year-old Camilla Medina-Bond, who was confident in her vision for the future.

      “I want to be an astronaut when I grow up,” she said. “I want to visit the Moon.”

      As for the details of her lunar mission, Medina-Bond’s plan is simple: “Just going to see what’s on it.” She has plenty of time to figure out the specifics — after all, giant leaps start with small steps. According to Meerscheidt, the aspiring astronaut has already taken the first and most critical step.

      “That’s what NASA is all about,” Meerscheidt said. “Explore, be inquisitive. Open your mind, open your imagination, and go for it.”

      Left: Camilla Medina-Bond, age 6, proudly shows off her foam stomp rocket and NASA White Sands Test Facility baseball cap during the Las Cruces Space Festival’s Astronomy & Industry Night on the New Mexico State University campus. Right: Medina-Bond immerses herself in another world as she operates a virtual reality headset. NASA/Anthony Luis Quiterio Medina-Bond’s aspiration is shared by many young dreamers. A 2024 global study by longtime NASA partner, the LEGO Group, found 77% of kids ages 4-14 want to travel to space.

      Carruth acknowledged that keeping the attention of today’s always-scrolling, trend-driven generation is not easy, and that children’s fascination with space often wanes as they age.

      “If you look at the statistics, space tends to be really cool until they get to middle school level, and then space isn’t cool anymore — not because it’s not cool, but because it then becomes inaccessible to a lot of students,” she said.

      Still, Carruth is prepared to navigate the challenge.

      “I want kids to understand that space is for everybody,” Carruth said. “I also want their parents and grandparents to understand why space is important and that this is a feasible career.”

      Oscar Castrejon, who attended the festival with his 12-year-old son, Oscar Jr., is on his own mission to nurture that understanding. “I’ve learned early kids need to develop their own passions, but if they say ‘hey, I like this, I’m interested in it,’ then I’ll take them to it,” Castrejon said. “If their eyes get opened, if their imagination gets sparked, you never know — you could be looking at the next NASA scientist.”

      Oscar Castrejon and his son Oscar Jr., age 12, stop by the White Sands TEST3 booth. Anthony Luis Quiterio WSTF TEST3 Deputy Program Manager and Business Manager Karen Lucht shares Castrejon’s philosophy, emphasizing the importance of authenticity.

      “Speak[ing] to who you are as a person will ultimately lead to who you will become as a professional,” she said.

      A remote test site, WSTF has its own ecosystem which Lucht compares to a “small city.” Among its residents are scientists and engineers, but also welders, writers, firefighters, and photographers — to name a few.

      “White Sands offers endless opportunities for everybody,” Lucht said. “Every career has a path here.”

      Lucht’s own journey illustrates the infinite potential that arises in diverse spaces like WSTF.

      “I came from a town of less than a thousand people, and I never dreamt that I would work for NASA,” she said. “As someone who was told many times that I would never make it to my position, I look back on my career and realize there are no restraints. You really can do anything you want to do.”

      For those wanting to join the ranks at WSTF, there is one important requirement: they must see themselves as stardust, a vital element in a grand cosmic plan.

      “We’re looking for people who have the right perspective, the desire to learn and contribute to something bigger than themselves,” Lucht said.

      At WSTF — a place where the stars feel close enough to touch — the sky is not the limit, it is only the beginning.
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Aerostar Thunderhead balloon carries the STRATO payload into the sky to reach the stratosphere for flight testing. The balloon appears deflated because it will expand as it rises to higher altitudes where pressures are lower.Credit: Colorado Division of Fire Prevention and Control Center of Excellence for Advanced Technology Aerial Firefighting/Austin Buttlar NASA is participating in a collaborative effort to use high-altitude balloons to improve real-time communications among firefighters battling wildland fires.  
      The rugged and often remote locations where wildland fires burn mean cell phone service is often limited, making communication between firefighters and command posts difficult.  
      The flight testing of the Strategic Tactical Radio and Tactical Overwatch (STRATO) technology brought together experts from NASA’s Ames Research Center in California’s Silicon Valley, the U.S. Forest Service, high-altitude balloon company Aerostar, and Motorola to provide cell service from above. The effort was funded by the NASA Science Mission Directorate’s Earth Science Division Airborne Science Program and the agency’s Space Technology Mission Directorate Flight Opportunities program.  
      “This project leverages NASA expertise to address real problems,” said Don Sullivan, principal investigator for STRATO at NASA Ames. “We do a lot of experimental, forward-thinking work, but this is something that is operational and can make an immediate impact.” 
      Flying High Above Wildland Fires 
      Soaring above Earth at altitudes of 50,000 feet or more, Aerostar’s Thunderhead high-altitude balloon systems can stay in operation for several months and can be directed to “station keep,” staying within a radius of few miles. Because wildland fires often burn in remote, rugged areas, firefighting takes place in areas where cell service is not ideal. Providing cellular communication from above, from a vehicle that can move as the fire changes, would improve firefighter safety and firefighting efficiency. 
      The STRATO project’s first test flight took place over the West Mountain Complex fires in Idaho in August and demonstrated significant opportunities to support future firefighting efforts. The balloon was fitted with a cellular LTE transmitter and visual and infrared cameras. To transmit between the balloon’s cell equipment and the wildland fire incident command post, the team used a SpaceX Starlink internet satellite device and Silvus broadband wireless system. 
      When tested, the onboard instruments provided cell coverage for a 20-mile radius. By placing the transmitter on a gimbal, that cell service coverage could be adjusted as ground crews moved through the region. 
      The onboard cameras gave fire managers and firefighters on the ground a bird’s-eye view of the fires as they spread and moved, opening the door to increased situational awareness and advanced tracking of firefighting crews. On the ground, teams use an app called Tactical Awareness Kit (TAK) to identify the locations of crew and equipment. Connecting the STRATO equipment to TAK provides real-time location information that can help crews pinpoint how the fire moves and where to direct resources while staying in constant communication. 
      Soaring Into the Future 
      The next steps for the STRATO team are to use the August flight test results to prepare for future fire seasons. The team plans to optimize balloon locations as a constellation to maximize coverage and anticipate airflow changes in the stratosphere where the balloons fly. By placing balloons in strategic locations along the airflow path, they can act as replacements to one another as they are carried by airflow streams. The team may also adapt the scientific equipment aboard the balloons to support other wildland fire initiatives at NASA. 
      As the team prepares for further testing next year, the goal is to keep firefighters informed and in constant communication with each other and their command posts to improve the safety and efficiency of fighting wildland fires. 
      “Firefighters work incredibly hard saving lives and property over long days of work,” said Sullivan. “I feel honored to be able to do what we can to make their jobs safer and better.” 
      Share
      Details
      Last Updated Nov 14, 2024 Related Terms
      Ames Research Center Airborne Science Earth Science Division Flight Opportunities Program Explore More
      5 min read NASA’s EMIT Will Explore Diverse Science Questions on Extended Mission
      Article 17 mins ago 3 min read Entrevista con Instructor de OCEANOS Samuel Suleiman
      Article 1 day ago 4 min read Entrevista con Instructora de OCEANOS María Fernanda Barberena-Arias
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Improving Firefighter Safety with STRATO
      Airborne Science at Ames
      Space Technology Mission Directorate
      View the full article
    • By NASA
      Ruidoso, New Mexico lay in an unusual hush on June 20, 2024. During any normal summer day, the village in the southern part of the state lives up to the Spanish translation of its name — noisy. 

      But the bustle of this vacation hotspot, which attracts nearly 2 million visitors each year, was stifled by a mandatory evacuation order issued as wildfires raged unchecked across Lincoln County and the Mescalero Apache Reservation.  After four days of fires, news of the disaster began spreading to surrounding communities.

      Wildfires cast an orange haze over the Sierra Blanca mountain range in Ruidoso, New Mexico, on June 20, 2024. Image courtesy of James Herrera At NASA’s White Sands Test Facility (WSTF), Fire Department Deputy Chief James Herrera and his team were on high alert from the moment the blaze began.  
      “There were so many rumors, so many things going on,” Herrera said. “People were saying the town was completely burning down. We were expecting the worst before we even got there.” 
      Herrera’s expectations were realistic.  
      Tinderbox conditions, rough terrain, and winds reaching more than 70 miles per hour fueled the flames raging at the South Fork area west of Ruidoso, devouring nearly 5,000 acres just hours after the fire started. 
      As first responders expended every resource available to them both on the ground and in the air, a second fire — the Salt Fire — broke out on tribal land south of the village. 
      Now the twin infernos closed in on Ruidoso like a set of jaws poised to snap shut.  
      Gov. Michelle Lujan Grisham quickly declared a state of emergency and the early whispers crescendoed into an urgent plea for aid from anyone who would listen. 
      There was no doubt in Herrera’s mind: WSTF, based 150 miles from Ruidoso in Las Cruces, New Mexico, would answer the call.  
      “Never once did [WSTF leadership] say ‘Sorry, we can’t help,’” he said. “They asked, ‘What can we do to help? How can we get there as soon as possible?’”  
      Shift changes made for an earliest possible departure at dawn on June 20. The WSTF Fire Department spent the night preparing their truck, gathering their belongings, and bracing for the uncertain. 
      “We didn’t know where we were going to sleep, there were no hotels, everything was closed,” Herrera said. “More than likely, we were going to end up sleeping in our engine.”

      For the moment, rest was off the table.  
      “I’m not going to lie, we probably didn’t even sleep. I know I didn’t,” Herrera said. “I closed my eyes, and it was two o’clock in the morning. Time to get going.” 
      After checking in at the Incident Command Post, Herrera and the WSTF team — Lieutenant Gary Sida, firefighters Steven Olsson and Gabriel Rodriguez, and driver and engineer Tommy Montoya — were deployed to Ruidoso’s Casino Apache Travel Center off Highway 70.

      Deputy Chief James Herrera (far left) and his crew (L-R) Driver/Operator Tommy Montoya, Firefighter Gabe Rodriguez (top), Lieutenant Gary Sida, and Firefighter Stephen Olsson return to a hero’s welcome at White Sands Test Facility in Las Cruces, New Mexico. NASA/Anthony Luis Quiterio When Herrera and his four-man crew reached the edge of the deserted mountain town, the silence was more than unusual. It was unsettling, as heavy as the smoke suffocating the Sierra Blanca Peak. 
      “You could not see more than 100 feet,” Herrera said. “The only sign of life was all the fire agencies that were there. It was an eerie feeling.” 
      NASA’s arrival on scene brought a shift from anxiety to optimism and relief. 
      “There were tears in some of their eyes because we were showing up to help,” he said. “I could hear people saying, ‘What’s NASA doing here?’” He added, “One gentleman asked us how we got there. I joked that we drove the whole line from Kennedy Space Center.” 
      By the afternoon, the light-heartedness among comrades was extinguished as escalating winds charged the situation to a fever pitch. The fire, once perched atop the mountains, began hurling down in a landslide of embers, leaping across Highway 70, and forming a nearly complete ring of danger.  
      Breathing grew difficult as ground crews, with aerial units roaring overhead, battled a relentless assault of heat. WSTF Fire Department’s assignment evolved into an effort to protect anything and everything within reach.  “It makes you realize how fast something can be taken away from you,” Herrera said.

      The NASA WSTF Fire Department makes engine preparations along U.S. Route 70 at the Ruidoso border. Image courtesy of James Herrera Though disaster descended in an instant, the day itself had been long. Herrera and his team were released from duty after a grueling 12 hours spent providing critical support to wildland units and successfully protecting nearby buildings.  
      “Once it starts to calm down, you can feel your hands start to shake a little bit because this thing was getting out of control really fast,” Herrera said.  
      By the weekend, containment efforts were gaining ground thanks to the efforts of a combined 780-strong emergency response force. Eager to rebuild, Ruidoso residents trickled back in, but the village soon encountered another challenge: rain.
      Following the South Fork and Salt fires — which claimed an estimated 25,000 acres, 1,400 structures, and two lives — monsoons battered Ruidoso. Throughout July, deluges washed over the region’s burn scars in an ironic insult to injury leaving people trapped in vehicles and homes underwater. As recently as Aug. 7, evacuations continued as the Ruidoso Police Department worked to preemptively clear the Cherokee Mobile Village due to past flash flooding in the area.  
      In this harsh landscape of crisis and aftermath, Herrera views mutual aid as more than a tactical response, but a vital investment. 
      “Building goodwill with the community is akin to cultivating fertile ground for growth and success,” he said. “I strongly feel it strengthens the bond between us and our community.”  
      With the wet season expected to continue through the end of September, Ruidoso’s forecast remains uncertain. Even as storm clouds gather, one thing is clear: if the call comes again, the WSTF Fire Department will always be ready to answer.
      View the full article
  • Check out these Videos

×
×
  • Create New...