Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Following the historic year of 1969 that saw two successful Moon landings, 1970 opened on a more sober note. Ever-tightening federal budgets forced NASA to rescope its future lunar landing plans. The need for a Saturn V to launch an experimental space station in 1972 forced the cancellation of the final Moon landing mission and an overall stretching out of the Moon landing flights. Apollo 13 slipped to April, but the crew of James Lovell, Thomas “Ken” Mattingly, and Fred W. Haise and their backups John Young, John “Jack” Swigert, and Charles Duke continued intensive training for the landing at Fra Mauro. Training included practicing their surface excursions and water egress, along with time in spacecraft simulators. The three stages of the Apollo 14 Saturn V arrived at the launch site and workers began the stacking process for that mission now planned for October 1970. Scientists met in Houston to review the preliminary findings from their studies of the lunar samples returned by Apollo 11. 
      Apollo Program Changes 
      Apollo Moon landing plans in early 1970, with blue indicating completed landings, green planned landings at the time, and red canceled landings. Illustration of the Apollo Applications Program, later renamed Skylab, experimental space station then planned for 1972. On Jan. 4, 1970, NASA Deputy Administrator George Low announced the cancellation of Apollo 20, the final planned Apollo Moon landing mission. The agency needed the Saturn V rocket that would have launched Apollo 20 to launch the Apollo Applications Program (AAP) experimental space station, renamed Skylab in February 1970. Since previous NASA Administrator James Webb had precluded the building of any additional Saturn V rockets in 1968, this proved the only viable yet difficult solution.  
      In other program changes, on Jan. 13 NASA Administrator Thomas Paine addressed how NASA planned to deal with ongoing budgetary challenges. Lunar landing missions would now occur every six months instead of every four, and with the slip of Apollo 13 to April, Apollo 14 would now fly in October instead of July. Apollo 15 and 16 would fly in 1971, then AAP would launch in 1972, and three successive crews would spend, 28, 56, and 56 days aboard the station. Lunar landing missions would resume in 1973, with Apollo 17, 18, and 19 closing out the program by the following year. 
      Top NASA managers in the Mission Control Center, including Sigurd “Sig” Sjoberg, third from left, Christopher Kraft, sitting in white shirt, and Dale Myers, third from right. Wernher von Braun in his office at NASA Headquarters in Washington, D.C. In addition to programmatic changes, several key management changes took place at NASA in January 1970. On Nov. 26, 1969, Christopher Kraft , the director of flight operations at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, assumed the position of MSC deputy director. On Dec. 28, MSC Director Robert Gilruth named Sigurd “Sig” Sjoberg, deputy director of flight operations since 1963, to succeed Kraft. At NASA Headquarters in Washington, D.C., Associate Administrator for Manned Space Flight George Mueller resigned his position effective Dec. 10, 1969. To replace Mueller, on Jan. 8, NASA Administrator Paine named Dale Myers, vice president and general manager of the space shuttle program at North American Rockwell Corporation. On Jan. 27, Paine announced that Wernher von Braun, designer of the Saturn family of rockets and director of the Marshall Space Flight Center in Huntsville, Alabama, since its establishment in 1960, would move to NASA Headquarters and assume the position of deputy associate administrator for planning. 
      Apollo 11 Lunar Science Symposium 
      Sign welcoming scientists to the Apollo 11 Lunar Science Conference. Apollo 11 astronaut Edwin “Buzz” Aldrin addresses a reception at the First Lunar Science Conference. Between Jan. 5 and 8, 1970, several hundred scientists, including all 142 U.S. and international principal investigators provided with Apollo 11 samples, gathered in downtown Houston’s Albert Thomas Exhibit and Convention Center for the Apollo 11 Lunar Science Conference. During the conference, the scientists discussed the chemistry, mineralogy, and petrology of the lunar samples, the search for carbon compounds and any evidence of organic material, the results of dating of the samples, and the results returned by the Early Apollo Surface Experiments Package (EASEP). Senior NASA managers including Administrator Paine, Deputy Administrator Low, and Apollo Program Director Rocco Petrone attended the conference, and Apollo 11 astronaut Edwin “Buzz” Aldrin gave a keynote speech at a dinner reception. The prestigious journal Science dedicated its Jan. 30, 1970, edition to the papers presented at the conference, dubbing it “The Moon Issue”. The Lunar Science Conference evolved into an annual event, renamed the Lunar and Planetary Science Conference in 1978, and continues to attract scientists from around the world to discuss the latest developments in lunar and planetary exploration. 
      Apollo 12 
      Apollo 12 astronaut Richard Gordon riding in one of the Grand Marshal cars in the Rose Parade in Pasadena, California. Actress June Lockhart, left, interviews Apollo 12 astronauts Charles “Pete” Conrad, Gordon, and Alan Bean during the Rose Parade.courtesy emmyonline.com Apollo 12 astronauts and their wives visiting former President and Mrs. Lyndon B. Johnson at the LBJ Ranch in Texas. On New Year’s Day 1970, Apollo 12 astronauts Charles “Pete” Conrad, Richard Gordon, and Alan Bean led the 81st annual Tournament of Roses Parade in Pasadena, California, as Grand Marshals. Actress June Lockhart, an avid space enthusiast, interviewed them during the TV broadcast of the event. As President Richard Nixon had earlier requested, Conrad, Gordon, and Bean and their wives paid a visit to former President Lyndon B. Johnson and First Lady Lady Bird Johnson at their ranch near Fredericksburg, Texas, on Jan. 14, 1970. The astronauts described their mission to the former President and Mrs. Johnson.  
      The Apollo 12 Command Module Yankee Clipper arrives at the North American Rockwell (NAR) facility in Downey, California. Yankee Clipper at NAR in Downey. A technician examines the Surveyor 3 camera returned by the Apollo 12 astronauts. Managers released the Apollo 12 Command Module (CM) Yankee Clipper from quarantine and shipped it back to its manufacturer, the North American Rockwell plant in Downey, California, on Jan. 12. Engineers there completed a thorough inspection of the spacecraft and eventually prepared it for public display. NASA transferred Yankee Clipper to the Smithsonian Institution in 1973, and today the capsule resides at the Virginia Air & Space Center in Hampton, Virginia. NASA also released from quarantine the lunar samples and the parts of the Surveyor 3 spacecraft returned by the Apollo 12 astronauts. The scientists received their allocated samples in mid-February, while after initial examination in the Lunar Receiving Laboratory (LRL) the Surveyor parts arrived at NASA’s Jet Propulsion Laboratory in Pasadena, California, for detailed analysis. 
      Apollo 13 
      As the first step in the programmatic rescheduling of all Moon landings, on Jan. 7, NASA announced the delay of the Apollo 13 launch from March 12 to April 11. The Saturn V rocket topped with the Apollo spacecraft had rolled out the previous December to Launch Pad 39A where workers began tests on the vehicle. The prime crew of Lovell, Mattingly, and Haise, and their backups Young, Swigert, and Duke, continued to train for the 10-day mission to land in the Fra Mauro region of the Moon.  

      During water recovery exercises, Apollo 13 astronauts (in white flight suits) Thomas “Ken” Mattingly, left, Fred Haise, and James Lovell in the life raft after emerging from the boilerplate Apollo capsule. Apollo 13 astronaut Lovell suits up for a spacewalk training session. Apollo 13 astronaut Haise during a spacewalk simulation. Apollo 13 prime crew members Lovell, Mattingly, and Haise completed their water egress training in the Gulf of Mexico near the coast of Galveston, Texas, on Jan. 24. With support from the Motorized Vessel Retriever, the three astronauts entered a boilerplate Apollo CM. Sailors lowered the capsule into the water, first in the Stable 2 or apex down position. Three self-inflating balloons righted the spacecraft into the Stable 1 apex up position within a few minutes. With assistance from the recovery team, Lovell, Mattingly, and Haise exited the spacecraft onto a life raft. A helicopter lifted them out of the life rafts using Billy Pugh nets and returned them to Retriever. Later that day, the astronauts returned to the MSC to examine Moon rocks in the LRL that the Apollo 12 astronauts had returned the previous November. 
      During their 33.5 hours on the Moon’s surface, Lovell and Haise planned to conduct two four-hour spacewalks to set up the Apollo Lunar Surface Experiment Package (ALSEP), a suite of five investigations designed to collect data about the lunar environment after the astronauts’ departure, and to conduct geologic explorations of the landing site. Mattingly planned to remain in the Command and Service Module (CSM), conducting geologic observations from lunar orbit including photographing potential future landing sites. Lovell and Haise conducted several simulations of the spacewalk timelines, including setting up the ALSEP equipment, practicing taking core samples, and photographing their activities for documentation purposes. They and their backups conducted practice sessions with the partial gravity simulator, also known as POGO, an arrangement of harnesses and servos that simulated walking in the lunar one-sixth gravity. Lovell and Young completed several flights in the Lunar Landing Training Vehicle (LLTV) that simulated the flying characteristics of the Lunar Module (LM) for the final several hundred feet of the descent to the surface. 

      A closed Apollo 13 rock box. An open rock box, partially outfitted with core sample tubes and sample container dispenser. A technician holds the American flag that flew aboard Apollo 13. In the LRL, technicians prepared the Apollo Lunar Sample Return Containers (ALSRC), or rock boxes, for Apollo 13. Like all missions, Apollo 13 carried two ALSRCs, with each box and lid manufactured from a single block of aluminum. Workers placed sample containers and bags and two 2-cm core sample tubes inside the two ALSRCs. Once loaded, technicians sealed the boxes under vacuum conditions so that they would not contain pressure greater than lunar ambient conditions. Engineers at MSC prepared the American flag that Lovell and Haise planned to plant on the Moon for stowage on the LM’s forward landing strut. 
      Apollo 14 
      Workers lower the Apollo 14 Lunar Module (LM) ascent stage onto the Command Module (CM) in a preflight docking test. Workers prepare the Apollo 14 LM descent stage for mating with the ascent stage. Workers prepare the Apollo 14 LM ascent stage for mating with the descent stage. As part of the rescheduling of Moon missions, NASA delayed the launch of the next flight, Apollo 14, from July to October 1970. The CSM and the LM had arrived at NASA’s Kennedy Space Center (KSC) in Florida late in 1969 and technicians conducted tests on the vehicles in the Manned Spacecraft Operations Building (MSOB). On Jan. 12, workers lowered the ascent stage of the LM onto the CSM to perform a docking test – the next time the two vehicles docked they would be on the way to the Moon and the test verified their compatibility. Workers mated the two stages of the LM on Jan. 20. 
      The first stage of Apollo 14’s Saturn V inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida. The second stage of Apollo 14’s Saturn V arrives at the VAB. The third stage of Apollo 14’s Saturn V arrives at KSC. The three stages of the Apollo 14 Saturn V arrived in KSC’s cavernous Vehicle Assembly Building (VAB) in mid-January and while workers stacked the first stage on its Mobile Launch Platform on Jan. 14, they delayed stacking the remainder of the rocket stages until May 1970. That decision proved fortunate, since engineers needed to modify the second stage engines following the pogo oscillations experienced during the Apollo 13 launch. 

      Apollo 14 backup Commander Eugene Cernan prepares for a vacuum chamber test in the Space Environment Simulation Lab (SESL). Apollo 14 backup crew member Joe Engle during a vacuum chamber test in the SESL. Apollo 14 astronauts Alan Shepard, Stuart Roosa, and Edgar Mitchell and their backups Eugene Cernan, Ronald Evans, and Joe Engle continued training for their mission. In addition to working in spacecraft simulators, Shepard, Mitchell, Cernan, and Engle conducted suited vacuum chamber runs in MSC’s Space Environmental Simulation Laboratory (SESL) and completed their first familiarization with deploying their suite of ALSEP investigations.  
      NASA engineer William Creasy, kneeling in sport coat, and the technical team that built the Modular Equipment Transporter (MET), demonstrate the prototype to Roundup editor Sally LaMere. Apollo 14 support astronaut William Pogue tests the MET during parabolic flight. The Apollo 14 astronauts made the first use of the Modular Equipment Transporter (MET), a golf-cart like wheeled conveyance to transport their tools and lunar samples. A team led by project design engineer William Creasy developed the MET based on recommendations from the first two Moon landing crews on how to improve efficiency on the lunar surface. Creasy and his team demonstrated the MET to Sally LaMere, editor of The Roundup, MSC’s employee newsletter. Three support astronauts, William Pogue, Anthony “Tony” England, and Gordon Fullerton tested the MET prototype in simulated one-sixth lunar gravity during parabolic aircraft flights.   
      To be continued … 
      News from around the world in January 1970: 
      January 1 – President Richard Nixon signs the National Environmental Protection Act into law. 
      January 4 – The Beatles hold their final recording session at Abbey Road Studios in London. 
      January 5 – Daytime soap opera All My Children premieres. 
      January 11 – The Kansas City Chiefs beat the Minnesota Vikings 23-7 in Super Bowl IV, played in Tulane Stadium in New Orleans. 
      January 22 – Pan American Airlines flies the first scheduled commercial Boeing-747 flight from New York to London. 
      January 14 – Diana Ross and the Supremes perform their final concert in Las Vegas. 
      January 25 – The film M*A*S*H, directed by Robert Altman, premieres. 
      January 26 – Simon & Garfunkel release Bridge Over Troubled Water, their fifth and final album. 

      View the full article
    • By NASA
      To put boots on the Moon—and keep them there—will require bold thinkers ready to tackle the challenges of tomorrow. 

      That’s why NASA’s Office of STEM Engagement at Johnson Space Center in Houston is on a mission to empower the next generation of explorers in science, technology, engineering, and mathematics (STEM). 

      Through the High School Aerospace Scholars (HAS) program, Texas juniors have the opportunity to immerse themselves in space exploration through interactive learning experiences. 

      “HAS is such an important program because we introduce students to the multitude of careers and experiences that contribute to space exploration,” said NASA HAS Activity Manager Jakarda Varnado. “We go beyond asking students who they want to be when they grow up and ask what problems they want to solve.” 

      Meet Former HAS Student Madeline King

      Madeline King always knew she wanted a career in STEM, with a dream of working at NASA influencing her decision to pursue a degree in Engineering.  

      Before joining HAS, King thought scientists mainly worked in labs and engineers focused on design. But the HAS program revealed a different reality—scientists and engineers often collaborated on interdisciplinary projects, sometimes even sharing roles.   
      Official portrait of Madeline King.NASA The program broadened King’s perspective on the diverse paths a STEM degree can lead to. It showed her that careers at NASA offer opportunities across various fields and disciplines. 

      King said participating in HAS helped to strengthen her problem-solving skills and ability to think creatively. The program required students to tackle complex technical tasks independently, emphasizing self-directed learning. King describes HAS as fun, challenging, and engaging, which helped her excel in technical roles.  

      “Learning to digest and internalize this information is a skill I continue to use when getting up to speed in new groups or taking on projects outside my current skill set,” said King.  

      Though King joined HAS during COVID-19, which limited in-person interactions, the experience still made an impact. Her mentors also offered insights into graduate school options, helping her weigh the benefits of advanced degrees against gaining hands-on experience at NASA.  

      The program opened doors to internships at Johnson in the Engineering Robotics and the Avionics Systems Integration Division. Now, she is studying mechanical engineering at the University of Houston, bringing passion and experience in electronics, robotics, education, project management, and aviation. 

      “Early on in my internship journey, HAS shined on my resume,” she said. “It demonstrated that I already had experience with NASA’s culture, values, and mission.” 
      Looking forward, King envisions herself as a flight controller, contributing to both the International Space Station Program and the Artemis campaign. Driven by her passion for NASA’s mission, King is just beginning her journey and is eager to be part of the future of space exploration. 

      “My internships since HAS have allowed me to make small contributions to both of these missions, and I’m excited to specialize as a full-time engineer,” said King.  

      Meet Caroline Vergara

      As a first-generation student, Caroline Vergara lacked the resources to fully explore her interests in aerospace engineering, let alone envision what that career might look like. That all changed when she was accepted into NASA’s HAS program. 

      “The exposure to real-world innovation ignited my desire to be part of something bigger, something that pushes the boundaries of human knowledge and capability,” she said.  
      Caroline Vergara announces the launch of the model rocket she built during her time in the HAS program. NASA/David DeHoyos Touring NASA facilities and watching engineers work on projects opened her eyes to the possibilities in STEM. Today, Vergara is a propulsion design engineering intern at United Launch Alliance, contributing to the Vulcan rocket as a Brooke Owens Fellow. 

      Vergara initially thought working in STEM was mostly about writing equations or running simulations but HAS showed her it is so much more. “A STEM career is about curiosity, collaboration, and the power to change the world,” she said. 

      During the program, Vergara joined a team of students to tackle a mission simulation project. They called themselves “Charlie and the Rocket Factory” and designed a prototype rocket together. Working with peers from all over the country showed her the power of diverse perspectives. She experienced firsthand what it was like to be part of a team with a shared vision, working toward something bigger than themselves. 

      Vergara also discovered her love for 3D printing and computer-aided design through HAS. She spent hours fine-tuning designs, fascinated by the process of turning digital models into physical reality. 

      Her experience with HAS also sparked a desire to give back. She returned to her hometown to share her story and encourage other students to pursue STEM. Partnering with Johnson Community Engagement Lead Jessica Cordero, she organized video conferences with NASA engineers on International Women in Engineering Day to inspire a new wave of students to be part of space exploration. 

      “The aerospace industry is entering a new space age, and we have the unique opportunity to put humans back on the Moon and explore beyond,” she said. 

      Her advice to the Artemis Generation is: “Go for it! You could be part of the generation that changes humanity’s destiny.” 
      Caroline Vergara, University of Houston Class of 2025. As a mechanical engineering honors student at the University of Houston and chief engineer of Space City Rocketry, Vergara envisions contributing to the Artemis campaign and advancing NASA’s mission to explore the cosmos. 

      “My dream is to contribute to space exploration efforts that put humans back on the Moon and beyond, and to one day work in Mission Control Center, where I can help guide those historic missions into the future.” 

      Meet Iker Aguirre

      For Iker Aguirre, the spark that ignited his journey toward a career in aerospace was lit by a passing conversation during his freshman year of high school. A senior classmate described the HAS program as a once-in-a-lifetime experience that cemented his passion for aerospace. That moment stayed with Aguirre, and when the opportunity arose, he did not hesitate to apply. 
      Iker Aguirre inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. “HAS showed me that in order to accomplish something as complex as Artemis, you need a well-rounded set of teams and individuals,” he said. “You don’t need to study aerospace to be in the aerospace industry!” 

      In 2020, Aguirre participated during the remote-only version of HAS, but he recalls that the program still gave him a much deeper understanding of the spaceflight industry. 

      Despite already being interested in aerospace, Aguirre says HAS broadened his horizons, showing him the diverse pathways into the field. Through collaborative projects with peers across Texas, he discovered that solving the challenges of space exploration requires more than just aerospace engineers.  

      The program’s emphasis on teamwork left a lasting impression. During his time with HAS, Aguirre found himself working alongside students from different backgrounds, each bringing unique perspectives to problem-solving. It introduced him to dedicated and passionate people with various personalities and cultures who all shared similar dreams and aspirations as him.  

      Aguirre credits HAS with not only refining his technical skills but also shaping his approach to innovation and teamwork. That experience paid off as he moved through his academic and professional journey, including Pathways program internships with NASA’s Johnson Space Center in Houston and Marshall Space Flight Center in Huntsville, Alabama.  

      “Getting connections at NASA through HAS helped me open many doors so far,” said Aguirre. “I met many good friends through HAS and my internship at Johnson, which I value to this day.” 

      Now pursuing a degree in rocket propulsion, with a focus on turbomachinery design, Aguirre remains committed to advancing space exploration. He hopes to contribute to humanity’s mobility in space, tackling challenges in rocket engine feed systems.  
      Iker Aguirre at NASA’s Johnson Space Center during his HAS internship. Through HAS, Aguirre found not just an educational program, but a community and a purpose. “My journey will forever be interlinked with NASA’s core values of benefiting humanity on and off the Earth,” he said. “I hope to inspire others just as much as the people who inspired me through my journey!” 
      View the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 27 min read
      Summary of the Third Annual AEOIP Workshop
      Introduction
      The Applied Earth Observations Innovation Partnership (AEOIP) was established in 2018 to facilitate knowledge coproduction and optimization of NASA Earth observations that can be used by natural resource managers for decision making. Through continued iteration and reflection, coproduction brings together stakeholders to share responsibilities and the completion of activities towards a common goal. AEOIP enables strong collaborations between NASA and the U.S. Forest Service (USFS), along with growing participation from U.S. Geological Survey (USGS), Bureau of Land Management (BLM), and other federal land management agencies.
      AEOIP has held several previous meetings: the first was a Joint Applications Workshop on Satellite Data for Natural Resource Management held April 29–May 2, 2019, reported in an Earth Observer article, “Summary of the USFS–NASA Joint Applications Workshop on Satellite Data for Natural Resource Management.” The group met again virtually in 2020 during PitchFest. In 2022, a virtual workshop on Integrating Remote Sensing Data for Land Management Decision-Making took place March 23–24, 2022. In 2023, the AEOIP workshop took place April 25–27, 2023, with a hybrid format – the in-person participants met at the USFS Geospatial Technology and Applications Center (GTAC) in Salt Lake City, UT. The 2023 workshop focused on Addressing Land & Water Monitoring Needs Using Remote Sensing Data.
      These workshops have been designed to build connections between participants across the research-to-applications spectrum with subject matter experts from a variety of federal agencies and other affiliations to continue to promote interagency collaboration within the Earth Observations (EO) applications field. This goal is accomplished using interactive panels and guided discussion sessions that highlight new tools and techniques, promote NASA EO data product uptake, and foster connections between data providers and data users.
      2024 Workshop Overview
      The most recent AEOIP workshop took place April 23–25, 2024, with a hybrid format. The in-person participants met in Ann Arbor, MI. The three-day event had a similar structure to its predecessors but with a wildland fire management theme. Altogether, 135 people participated in the workshop, with 77 attending in person and 58 virtually – see Photo 1.
      Photo 1. Participants at the 2024 AEOIP workshop. Photo credit: AEOIP Meeting Objectives
      The workshop objectives were to:
      meet AEOIP’s mission by providing a forum for building new relationships among Earth observations data providers, users, and stakeholders; gather and/or codevelop “shovel-ready” ideas to better leverage Earth observations to meet science and management priorities of U.S. land and natural resource management agencies; gather needs for and/or develop educational materials to support the use of existing EO training resources for fire management; and gather ideas for the 2025 workshop and other AEOIP activities. Breakout Sessions
      A large segment of this workshop was dedicated to four concurrent topical breakout sessions – referred to in this report as Breakout Sessions A–D. The topics covered in each breakout session are listed below, along with the name(s) of those who facilitated discussion.
      Breakout Session A: Fuels, Wildland Fire Emissions, Carbon & Climate – Andy Hudak [USFS] and Edil Sepulveda Carlo [NASA’s Goddard Space Flight Center (GSFC)/Science Systems and Applications Inc. (SSAI)]; Breakout Session B: Prescribed Fire Planning & Management – Nancy French [Michigan Tech Research Institute (MTRI)], Birgit Peterson [USGS], and Jessica Meisel [University of Idaho]; Breakout Session C: Fractional Vegetation Cover Products & Decision Making – Tim Assal and Jake Slyder [both U.S. Department of Interior, BLM], and Liz Hoy and Amanda Armstrong [both at GSFC]; and Alexis O’Callahan [University of Arkansas]. Breakout Session D: Post-fire Effects & Recovery: Assess, Predict, Remediate, and Monitor – Mary Ellen Miller [MTRI]. All of the breakout groups met on each day of the meeting. On the morning of the first day, the facilitators of each group gave brief “elevator pitches” about each breakout topic, and participants selected a topic for focus. After that, a block of time each day was dedicated to breakout activities and discussions. Participants were asked to focus on different aspects of the topic each day. In the afternoon of the first day, each group focused on identifying needs and challenges in the area being discussed – with a brief report-out at the end of the day. On the afternoon of the second day, the focus was on data availability and solutions – i.e., finding ways to overcome obstacles to making data more readily available to users – again with a brief report- out at the end of the day. On the morning of the third day, there were topical presentations. Each group worked to synthesize their three days of discussions and chose a representative to give a summary report during the closing plenary later that morning.
      Workshop Summary
      The remainder of this article presents highlights from each day of the workshop. This includes the most important presentations given during the meeting and those given during the breakout sessions. The report also includes highlights from training breakouts given on the second day of the workshop and a summary of a prescribed fire field trip, which took place the day before the workshop and visited two locations – see Optional “Field Trip” for AEOIP Workshop Participants to learn more.
      Optional “Field Trip” for AEOIP Workshop Participants
      On April 22, 2024, an optional field trip was offered that featured two sites demonstrating prescribed fire in Michigan. For the first stop on the trip, Kevin Butler [Washtenaw County—Natural Areas Preservation Program Stewardship Supervisor] gave a tour of a prescribed fire site in Park Lyndon, a county park in the northwest part of Washtenaw County, MI. The park is being restored to maintain native species using prescribed fire as invasive species control. The intent of these efforts is to restore oak meadows and preserve over 500 species of plants across fens, marshes, ponds, forest, and prairie lands.
      On the second leg of the trip, Tina Stephens [City of Ann Arbor—Volunteer and Outreach Coordinator] led a tour of Furstenberg Nature Area, in the city of Ann Arbor, MI. She highlighted the importance of prescribed burning to achieve ecological benefits. The 0.15-km2 (38-acre) park contains wetlands, woodlands, prairie, and oak savanna. Since the mid-1990’s, Natural Area Preservation staff and volunteers have maintained those ecosystems through controlled burns and invasive shrub removal. The second tour stop included a small prescribed fire demonstration – see Photo 2.
      Photo 2. Ann Arbor park staff conduct a prescribed fire demonstration for workshop participants during the Furstenberg Nature Area tour portion of the AEOIP field trip. Photo credit: Joseph Paki DAY ONE
      On the first day, Kira Sullivan-Wiley [Pew Institute] gave a plenary presentation, in which she discussed the value of coproduction, which in the context of AEOIP can be described as honoring the generative capacity of others as a means of optimizing the use of Earth by natural resource managers for decision making – see Photo 3. The benefits of this approach include cost reduction, tracking new ideas, and empowering marginalized voices.
      The first block of breakout sessions also occurred during the afternoon of the first day, along with a short report-out. In light of the keynote discussion on coproduction, deliverables from this meeting’s breakout sessions can be seen as coproduced, new or improved conduits between NASA and land-managing entities.
      After the keynote, representatives of government agencies (NASA, USFS, and BLM) presented their respective agency’s perspectives. The manager of a nearby state park in Michigan followed with a local perspective. A series of short presentations in the late afternoon featured various program highlights from NASA’s Earth Science Division, which are not detailed in this report – see workshop agenda for list of programs and speakers.
      Notable Presentations
      In addition to Kira Sullivan–Wiley’s keynote (described above), Christina Moats-Xavier [NASA Headquarters, Earth Action Program—Program Manager for Mission Engagement] shared NASA’s perspective, focusing on NASA’s Earth Science-to-Action strategy, which aims to increase the impact of scientific data. NASA’s Applied Science Program is now included under the broader umbrella of the new Earth Action program element of NASA’s Earth Science Division. This strategy has three pillars: 1) scaling existing efforts; 2) building bridges; and 3) focusing on the user. By collaborating with NASA, AEOIP can address real-world challenges to develop solutions that benefit society. Overall, the presentations on the first day highlighted the importance of collaborative, user-centered approaches and community engagement in addressing environmental challenges.
      Everett Hinkley and Frenchy Morisette [both USFS] provided a practitioner’s perspective. They discussed USFS efforts to address climate adaptation, wildfire management, and incorporation of Indigenous traditional ecological knowledge. They also emphasized the application of artificial intelligence/machine learning (AI/ML) for mapping and remote sensing tools.
      Both Jake Slyder and Tim Assal described their respective government agency’s management of vast (mostly western) land areas and use of remote sensing for post-fire emergency stabilization and integration with the Assessment, Inventory, and Monitoring (AIM) program.
      Kevin Butler offered more of a local perspective as he discussed land stewardship in Michigan. He emphasized the importance of community involvement and respecting natural ecosystems, especially fire-dependent ones, at the local level.
      Photo 3. Kira Sullivan-Wiley [Pew Institute] presents on co-production of knowledge during the first day’s plenary session. Photo credit: AEOIP DAY TWO
      The presentations on the second day of the workshop highlighted the opportunities that Earth observing satellite data presents for natural resource management applications. Five presenters contributed to the panel discussion, titled “Communicating and Soliciting End User Needs: Past, Present and Future.” The second – longer – block of breakout sessions also occurred with a short report-out at the end of the day. A poster session ran concurrently with the report-outs. While this session is not described in this report, it afforded participants an opportunity to showcase their Earth observation related projects and/or interact with their peers. Highlights from the day follow below.
      Notable Presentations
      Pontus Olafsson [NASA’s Marshall Space Flight Center] and Natasha Sadoff [NASA HQ—Satellite Needs Program Manager] presented on the Satellite Needs Working Group (SNWG), which provides a coordinated approach to identify and communicate federal satellite Earth observation needs and develop solutions based on Earth observation data. The speakers explained that as part of this effort, SNWG facilitates a biannual survey to all civilian federal agencies. SNWG provides federal agencies a path to coordinate Earth observing needs and a mechanism to develop actionable solutions for decision makers. Solutions cover thematic areas, including air quality, land use/land cover, and water resources. They noted that NASA is also making a greater effort to engage with agency partners in the co-development of new solutions that are useful, accessible, and actionable.
      Alison York [University of Alaska Fairbanks] spoke about the Joint Fire Science Program (JFSP) and Fire Science Exchange Network (FSEN). JFSP’s main function is to maintain and grow a data repository and community based on fuels, fire behavior, fire ecology, and human dimensions. The goal is to help enable informed, actionable change by policy makers and land managers with the best available scientific support. York then discussed the FSEN, which acts as a mechanism to collate research needs from a collection of regional fire exchanges. The syntheses of data and data needs provides more effective understanding and management of fire.
      Training Breakout Session Takeaways
      On the second day, the four breakout sessions met, beginning with four short (25-minute) trainings. The speakers each gave half-hour presentations, which they repeated twice during the hour dedicated to the training breakouts, allowing participants to engage in two of the training breakouts if desired.
      Pete Robichaud [USFS] discussed training opportunities for modeling post-fire hydrological response using the Water Erosion Prediction Project (WEPP). Soil burn severity is first assessed with remote sensing and then field verified. A subsequent soil burn severity map can be created to give details on physical features, e.g., ash color, ash depth, fine roots, soil structure, water repellency, and ground cover. This resource can be used to create a risk assessment table of probability and consequence parameters. Following the risk assessment, the Forest Service Water WEPP suite of tools can be used to model the landscape. The WEPP suite includes both hillslope and watershed modeling tools. The final step in the Burned Area for Emergency Response (BAER) program is to implement and monitor solutions.
      Rupesh Shretha [Oak Ridge National Laboratory (ORNL), Distributed Active Archive Center (DAAC)] discussed the Earth Observing System Data and Information System (EOSDIS) DAACs, which are collocated with centers of science discipline expertise and archive and distribute NASA Earth Science data products. The ORNL DAAC archives and distributes terrestrial ecology data, particularly data from field and airborne campaigns. The Terrestrial Ecology Subsetting & Visualization Services (TESViS) – formerly MODIS–VIIRS subsets tool – provide subsets of satellite data in easy-to-use formats that are particularly valuable for site-based field research. The Ecological Spectral Information System (ECOSIS) integrates spectral data with measurements of vegetation functional traits (i.e., species, foliar chemistry). ECOSIS allows users to submit spectral data and return a citable DOIs. ECOSIS also provides users application programming interface (API)-based methods to retrieve thousands of field spectra.
      Jake Slyder discussed the use of remote sensing for efficient resource management over vast tracts of land with limited human and financial resources. He explained that while the vast collection of remotely sensed data makes it challenging to effectively exploit, Google Earth Engine (GEE) has become an important tool in leveraging remotely sensed information to address BLM management questions. The Change and Disturbance Event Detection Tool (CDEDT), a GEE-based application, allows users to detect and develop vector geospatial products to identify changes and disturbances to surface cover between two dates of observations [10 m (~33 ft) resolution] from the European Space Agency’s (ESA) Copernicus Sentinel-2 mission. Slyder said that the Version 2 (V2) beta product includes the National Agriculture Imagery Program (NAIP) and ESA Copernicus Sentinel-1 SAR Imagery. CDEDT supports a range of BLM monitoring applications, including disaster events, energy development, forest disturbances, and seasonal patterns and processes (e.g., vegetation, water cover). The CDEDT tool is publicly available and does not require any license or special software.
      DAY THREE
      The third day was dedicated to the final block of the breakout sessions and a final plenary, where a representative from each breakout group gave five to seven minute summaries of their discussions throughout the meeting. The overview was followed by a meeting wrap-up and adjournment. The sections below summarize the topical presentations given on day three and encapsulate the three days of discussions.
      Breakout Session A: Focus on Carbon
      The carbon breakout aimed to inform participants about carbon-related EO initiatives and spark discussion about user needs.
      Aaron Piña [USFS] spoke about the Forest Service’s broad base of applied research that spans wildfire weather and behavior to dynamics of the smoke produced – see Photo 2. Recent assessments have been made for wildland fire, controlled burn smoke, and remote air monitors. Piña spoke about Bluesky Playground, a community-driven tool aimed at providing the public with information on fuels and smoke modeling. These data have been used to identify important indicators for fires and fuels (e.g., vertical plume structure).
      Piña then discussed a fusion Fire Radiative Power (FRP) data product [MOD19A2] that combines data from four sources – the Visible and Infrared Scanner (VIRS) on the former Tropical Rainfall Measuring Mission (TRMM), the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi NPP), the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua platforms, and the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product.
      A group discussion followed Piña’s presentation, during which several participants expressed concerns about the continuity of VIIRS and the other observations that are used in the fusion FRP product. Another topic of discussion was the potential of remotely sensed data to improve the characterization of duff (decaying vegetation) in satellite data products. NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) mission data have also been used to characterize the vertical structure of smoke plumes; however, these efforts have thus far been limited by personnel knowledge gaps as well as raw data formats.
      Chris Woodall [USFS] discussed the growing emphasis on carbon metrics for a variety of sectors and applications. The USFS wants to work in tandem with other entities, especially federal organizations, to maximize efforts and workstream. USFS is seen as the in-situ carbon observer, while NASA is the remote sensor, and USGS is the lateral flux assessor. The coproduction of knowledge and data regarding carbon among these agencies is an iterative process. The USFS investment in improved Measurement, Monitoring, Reporting, and Verification (MMRV) of greenhouse gas (GHG), for example, can expand soil and land-use inventories to improve alignment with remote-sensing platforms. Challenges to implementing this cooperative approach to collecting carbon metrics include creating a workflow that incorporates a wealth of existing resources and accruing data from multiple federal agencies concerned with ecosystem carbon management to create scalable GHG knowledge. The coproduction, iteration, and dissemination of knowledge should be a major focus with all interested parties – not just the aforementioned federal agencies.
      Sydney Neugebauer [NASA’s Langley Research Center] and Melanie Follette-Cook [GSFC] discussed NASA’s capacity building initiatives, which are aimed at developing and strengthening an organization or community’s skills, abilities, processes, and resources to enable them to survive, adapt, and thrive in a fast changing world. The DEVELOP, Indigenous Peoples Initiative, and SERVIR programs (all under the Earth Action program element) work towards capacity building through co-development projects, collaborative training, and data availability. The NASA Applied Remote Sensing Training (ARSET) program has offered over 100,000 training sessions since it was created in 2009 – primarily to international participants. The trainings are free and virtual for individuals interested in using remotely sensed data in a diverse suite of environmental applications. All content is archived. NASA’s Carnegie-Ames-Stanford Approach (CASA), which has contributed to global carbon dioxide (CO2) sequestration datasets for the past 30-years, will be upgraded to incorporate CO2 fluxes. The NASA cooperative interagency U.S. Greenhouse Gas Center is also looking for feedback on its beta portal.
      The group discussions that followed identified and addressed AEOIP needs and questions (e.g., obtaining carbon and smoke emission estimates from prescribed wildfires and ensuring global satellite fire record continuity). Participants also identified the need for near real-time active fire and burned area mapping at medium scale and for continuity of these measurements. The group is interested in engaging federal agency end users to obtain feedback on their capacity to facilitate and elucidate capacity needs. Prominent challenges going forward include preparing for the end of the Terra and Aqua missions, which will include the decommissioning of MODIS, and ensuring the continuity of VIIRS, which is being used to allow for continuity of MODIS data products. One of the greatest unknowns identified was being able to determine wildfire fuel conditions in near-real time, and the ability to constrain estimates of fuel attributes to a focused fire event.
      Andy Hudak discussed the diverse coalition of practitioners who manage more than just carbon (e.g., forest health, harvest, fires). Of the diverse group of stakeholders, Indigenous Tribes are at the cutting edge using lidar for carbon assessment. While Forest Inventory and Analysis plots are used for bias correction, they do not provide synoptic coverage for accurate carbon assessments. Lidar and other passive remote sensing satellite data provide a way to address this need. Tree lists are also highly valuable to carbon and forest managers for diverse applications. Application-specific metrics (e.g., timber volume, basal area, and density) can be weighted based on stakeholder priorities, as quantified from stakeholder surveys, to optimize data products.
      Sarah Lewis [USFS] explained the needs and applications of Earth observations in a post-fire environment. The information needs to be available quickly, integrated into effective decision-making tools, and delivered in a functional product. Information is needed on water, soils, vegetation recovery, and habitat – all major metrics of interest in a data product. Areas of concern during post-fire management for water quality and erosion control include ash and soil–water transport. In addition, major concerns exist for timely data acquisition and processing, along with the fate and transport mapping of post-fire ash. Data products would benefit from end-user input to optimize relevance and accessibility of decision ready maps, models, and trusted recommendations.
      The group identified the need for heavy carbon fuels and duff estimates for ecological modeling, which is critical to achieving a better understanding of smoke and carbon emissions. The heavy carbon fuel and duff estimates may be achieved through multiple means but may be most accessible currently through a new layer in the LANDFIRE database. They also identified the need for more post-fire data for model training and integration of active remote sensing data. Finally, the group identified the need for more regulation and research on prescribed fire emissions and disturbance.
      Breakout Session B: Prescribed Fire
      This breakout session focused on prescribed fires. Some of the major objectives and needs that emerged from this session were improved access to data, cultivating deeper public trust in the practice, creating networks of future coproduction, and assessing end-user needs, burn maps, and securing funding. The discussions emphasized knowledge and awareness gaps as a major impediment to prescribed fire implementation. Uniform capacity building is an ideal approach to engage stakeholders at a reference level appropriate to their background to optimize equity and efficacy.
      Another issue that came up during discussion is that land management professionals do not have the time or resources to stay current with data sources and analysis techniques. The participants suggested the creation of a “Fire Science Library” as an iterative data tool to organize and present fire knowledge in an actionable and streamlined manner for public land managers. The interface would allow practitioners to filter unique categories (e.g., role, scope, region, ecosystem type, weather, agency affiliation) to provide the ability to search, modify, and maintain fire science knowledge as it evolves. This interface would also provide provenance through references to papers, justification for methods, and case studies. The library would guide and streamline data collection, analyses, and interpretation workflows that are needed for holistic prescribed fire planning and monitoring based on tangible needs from fire professionals.
      The virtual library tool would provide a user with a fire-science knowledge graph, which is an organized representation of real-world entities and their relationships that could quickly connect fire-related management with current research questions concerning data products, processing methods, and data sources along with references and case studies. Information provided in the knowledge graph would need to be context specific but not overly prescriptive to avoid constraining users to a rigid workflow that is more common in basic data portals. Knowledge graphs are associated with semantic web technology that forms a modern version of a database. The tool establishes relationships between entities that promote new relationship discovery, search, and modification. It also provides a foundation on which other applications can be built, such as prescribed fires in the southeast and incorporating drone data. Focusing on prescribed fire may help to bound the initial product development but leave the door open for eventual expansion for wildfire.
      The group identified objectives moving forward, including the need to finalize the main set of prescribed fire management questions (e.g., planning, implementation, pre/post monitoring), establish user personas based on known representatives and gaps, engage the Earth Science Information Partners (ESIP), identify cluster members (e.g., subject matter experts from local and federal agencies, private industry, and academia/research), and investigate additional funding sources. (Clusters are agile working groups within ESIP formed to focus on specific topics.)
      Breakout Session C: Fractional Vegetation Cover
      This breakout session focused on fractional vegetation cover (FVC) – see Photo 4. The presenters introduced three large FVC assessment efforts, and the participants contributed to a Strengths, Weakness, Opportunities, and Threats (SWOT) analysis of FVC products intended to improve the use of this data by decision makers – see Table.
      Photo 4. [left to right] Amanda Armstrong, Elizabeth Hoy [both at Goddard Space Flight Center], and Timothy Assal [Bureau of Land Management] collaborating during the Fractional Vegetation Cover Breakout. Photo credit: AEOIP Tim Assal discussed the BLM’s Assessment Inventory and Monitoring (AIM) strategy. He explained that AIM has nearly 60,000 monitoring locations across the terrestrial uplands, aquatic systems, and riparian and wetland habitat of the U.S., and the data collected are being used for monitoring and restoration activities. Assai added that integration of remote sensing data with field plot data enables the generation of continuous datasets (e.g., FVC that can relate field plot-level indicators to those based on remote-sensing). He also reported that FVC data are currently being used to address numerous management decisions.
      Sarah McCord [USDA] discussed V3 of the Rangeland Analysis Platform (RAP). McCord explained that V3 uses vegetation cover and rangeland production data to monitor these parameters. The model also uses species composition data. She explained that there are approximately 85,000 training/validation locations across the U.S. that have been incorporated into the modeling process. She said that enhancements to future versions of RAP are expected as data from new satellite instruments, field plots, and deep learning (i.e., application of AI/ML techniques) are all incorporated into the model. McCord chairs a working group that is actively investigating sources of error and uncertainty within individual and across different FVC products.
      Matt Rigge [USGS Earth Resources Observation and Science (EROS) Center] discussed V3 of the Rangeland Condition Monitoring Assessment and Projection (RCMAP), which will provide current and future condition using Landsat time series. Data available includes cover maps and potential cover. The platform uses various training data in addition to AIM plot data. In the future RCMAP plans to incorporate data from synthetic NASA-Indian Space Research Organization Synthetic Aperture Radar (NISAR), from NASA’s Earth Surface Mineral Dust Source (EMIT) mission, and from convolution neural network-based (CNN) algorithms.
      Bo Zhou [University of California, Los Angeles (UCLA)] discussed V2 of the Landscape Cover Analysis and Reporting Tool (LandCART). V3 will be different and coming in the future. He explained that the BLM uses V3 to make legally defensible decisions. He then discussed the training data, which come mostly from AIM. The training dataset includes 71 Level-4 (L4) Ecoregions, as defined by the U.S. Environmental Protection Agency, with at least 100 observations. Zhou noted that these training data are used to define spatial extent, the temporal extent is defined by available satellite imagery, and uncertainty estimates are based on CNN and random forest (RF) machine-learning algorithms.
      Eric Jensen [Desert Research Institute] discussed how ClimateEngine.org uses cloud-based tools, such as GEE, to access, visualize, and share Earth observation datasets to overcome computational limitations of big data in a real-time environment. It encompasses over 85 datasets, including RAP and RCMAP, and the group is working to add LandCART. Two core functionalities of the ClimateEngine app are producing maps and making graphs. Jensen provided a brief demonstration of the app using a juniper removal project in sage grouse habitat in southern Idaho.
      Strengths
      • Tools available for accessing and processing data are user-friendly and widely accessible, making it easy to compile, use, and display data for users of all expertise levels across a range of management activities.
      • Tools provide a comprehensive view of an area, offering both current and retrospective insights that are highly regarded by the restoration community.
      • Tool format supports integration of new datasets, ensuring inclusivity and consistency over time and space.   Weaknesses
      • Training data exhibits spatial and temporal biases.
      • Training data is biased towards federal data, lacking global representation.
      • Sensors have limitations for both temporal and spatial accuracy.   Opportunities
      • Managers can use these tools to make informed decisions and evaluate the effectiveness of their treatments.
      • Additional training (e.g., training in how to process new data types, such as hyperspectral data) could institutionalize remote sensing and reach more end users.
      • Future expansion of AI/ML techniques and cloud-based services could reduce error, enhance data quality, and increase user reach.   Threats
      • Stability of funding could threaten continuity of measurements.
      • Falling into a “one size fits all” mentality could stifle innovation.
      • Variation in land management organizations’ willingness to update data and lack of cohesion could prevent obtaining full potential of FVC.
      • Transition from research to operations could hinder collaboration and tool development and weaken the community of practice.
      • Poor performance, misuse of information, and data sovereignty could diminish the community’s trust in the tools.
      • Rapid technological advancements could displace smaller businesses.   Table. Results of a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis of the current state of Fractional Vegetation Cover (FVC) data analysis tools and techniques. Breakout Session D: Post-fire Effects and Recovery
      This session focused on assessing, predicting, remediating, and monitoring areas in the aftermath of fires. The focus was on “shovel-ready” ideas, such as improving operational soil burn severity maps to connect post-fire ground conditions and soil properties. The participants highlighted the need to leverage information (e.g., active fire thermal data) to better detect changes in post-fire cover and soil properties. Such information would be beneficial to USFS’s Burned Area for Emergency Response (BAER) program as well as to researchers, data providers, decision makers, and community leaders. The group discussed steps that would aid in this collaboration (e.g., incorporating thermal imagery into mapping soil burn severity, developing and validating products, getting first-look data to field teams, monitoring threats by conducting rapid burn severity assessment before official soil burn severity maps are made available, and sharing outputs quickly with decision makers).
      The breakout participants also noted the challenge of ash load mapping, which they suggested might be constrained by using information on pre-fire fuels (e.g., biomass, understory, and canopy vegetation) to constrain potential ash production. Derived information products [e.g., Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), LANDFIRE fuels layers, and RAP] may improve this process. The group noted the limitations of the VIIRS instrument for mapping fire duration and soil heating. The group proposed adding supplemental data through the use of National Infrared Operations (NIROPS) raw infrared imagery – see Figure 1.
      Fire tools currently available – and under consideration for improving maps – include VIIRS active fire data through NASA’s Fire Information for Resource Management System (FIRMS), fire event tracking through NASA’s Earth Information System Fire Event Data Suite (FEDS), the burn severity prediction model at MTRI, and Rapid Differenced Normalized Burn Ratio Mapping at the University of Wisconsin, Madison. The group identified VIIRS L1 image capture to detect smoldering fires as a potential improvement in wildfire characterization. The group also suggested more frequent observations of moderate resolution satellites, GOES Integration [0.5–2 km (0.3–1.2 mi) spatial resolution], and comprehensive field data. They identified possible ways to improve post-fire soil burn severity maps (e.g., information on pre-fire fuels, soil characteristics, and thermal properties, such as fire heating, residence time, spread rate), optical characteristic (e.g., vegetation mortality, ash production), and lidar canopy metrics.
      Presently, burn severity is assessed using a simple spectral index derived from remote sensing data, driven by necessity, data access, and computing power. The group presented the need to break this single number into ecologically meaningful components for better post-fire assessment and remediation. Improvements could involve incorporating additional information (e.g., peak soil temperature, heat residence time, and fuel moisture). Coupling atmospheric fire behavior models could address temporal gaps, necessitating high-spatial and temporal resolution thermal data sets.
      The participants agreed that future strategies should include monitoring warmer areas and smoldering zones instead of just flaming fronts, as well as exploring temperature differences across burn severities. Additionally, post-fire assessments would benefit from using other spectral bands and post-fire Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) products. They also added that access to more field information is crucial for scientific post-fire observations. Efforts are underway to make the SBS S123 survey system a national standard, though surveys currently reside with local units that have good record-keeping practices.
      Figure 1. Optical [left and right] and thermal [right, overlay] images of participants at the 2024 AEOIP workshop obtained by an unpiloted aerial vehicle (UAV). Image credit: Colin Brooks Conclusion
      The 2024 AEOIP workshop addressed a wide range of geospatial data tool and training needs and forums. The meeting centered on coproduction of knowledge and community-of-practice building as key needs for the geospatial data topics. Participants identified capacity building – through awareness, accessibility, and utility of data and tools – as the top priority for processing and technological advancement initiatives.
      The breakout session topics selected (e.g., carbon concentrations, wildfires, prescribed fires, and landscape dynamics) were chosen to promote dialogue between data users and scientists, leading to plans for action and change in data and tool utility in four areas of interest for land managers. Following the meeting, the organizers submitted a spreadsheet detailing the data and tool needs identified during the breakouts to the Earth Action Program. The SNWG has also been made aware of the most compelling needs that participants identified. The AEOIP believes that by bridging two groups – data users and research and development – it will be possible to bolster user provenance and efficacy of NASA resources moving forward.
      Severin Scott
      Washington State University
      severin.scott@wsu.edu
      Alan B. Ward
      NASA’s Goddard Space Flight Center (GSFC)/Global Science and Technology (GST)
      alan.b.ward@nasa.gov
      Alexis O’Callahan
      University of Arkansas
      aocallah@uark.edu
      Share








      Details
      Last Updated Jan 03, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Next Generation Lunar Retroreflector, or NGLR-1, is one of 10 payloads set to fly aboard the next delivery for NASA’s CLPS (Commercial Lunar Payload Services) initiative in 2025. NGLR-1, outfitted with a retroreflector, will be delivered to the lunar surface to reflect very short laser pulses from Earth-based lunar laser ranging observatories. Photo courtesy Firefly Aerospace Apollo astronauts set up mirror arrays, or “retroreflectors,” on the Moon to accurately reflect laser light beamed at them from Earth with minimal scattering or diffusion. Retroreflectors are mirrors that reflect the incoming light back in the same incoming direction. Calculating the time required for the beams to bounce back allowed scientists to precisely measure the Moon’s shape and distance from Earth, both of which are directly affected by Earth’s gravitational pull. More than 50 years later, on the cusp of NASA’s crewed Artemis missions to the Moon, lunar research still leverages data from those Apollo-era retroreflectors.
      As NASA prepares for the science and discoveries of the agency’s Artemis campaign, state-of-the-art retroreflector technology is expected to significantly expand our knowledge about Earth’s sole natural satellite, its geological processes, the properties of the lunar crust and the structure of lunar interior, and how the Earth-Moon system is changing over time. This technology will also allow high-precision tests of Einstein’s theory of gravity, or general relativity.
      That’s the anticipated objective of an innovative science instrument called NGLR (Next Generation Lunar Retroreflector), one of 10 NASA payloads set to fly aboard the next lunar delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative. NGLR-1 will be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
      Developed by researchers at the University of Maryland in College Park, NGLR-1 will be delivered to the lunar surface, located on the Blue Ghost lander, to reflect very short laser pulses from Earth-based lunar laser ranging observatories, which could greatly improve on Apollo-era results with sub-millimeter-precision range measurements. If successful, its findings will expand humanity’s understanding of the Moon’s inner structure and support new investigations of astrophysics, cosmology, and lunar physics – including shifts in the Moon’s liquid core as it orbits Earth, which may cause seismic activity on the lunar surface.
      “NASA has more than half a century of experience with retroreflectors, but NGLR-1 promises to deliver findings an order of magnitude more accurate than Apollo-era reflectors,” said Dennis Harris, who manages the NGLR payload for the CLPS initiative at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      Deployment of the NGLR payload is just the first step, Harris noted. A second NGLR retroreflector, called the Artemis Lunar Laser Retroreflector (ALLR), is currently a candidate payload for flight on NASA’s Artemis III mission to the Moon and could be set up near the lunar south pole. A third is expected to be manifested on a future CLPS delivery to a non-polar location.
      “Once all three retroreflectors are operating, they are expected to deliver unprecedented opportunities to learn more about the Moon and its relationship with Earth,” Harris said.
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      Learn more about. CLPS and Artemis at:
      https://www.nasa.gov/clps
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Jan 02, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
      3 min read NASA Science Payload to Study Sticky Lunar Dust Challenge
      Article 2 weeks ago 4 min read Artemis II Core Stage Vertical Integration Begins at NASA Kennedy
      Article 2 weeks ago 2 min read NASA Names Carlos Garcia-Galan as Gateway Program Deputy Manager
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      As 1969, an historic year that saw not just one but two successful human lunar landings, drew to a close, NASA continued preparations for its planned third Moon landing mission, Apollo 13, then scheduled for launch on March 12, 1970. The Apollo 13 prime crew of Commander James A. Lovell, Command Module Pilot (CMP) Thomas K. “Ken” Mattingly, and Lunar Module Pilot (LMP) Fred W. Haise, and their backups John W. Young, John L. “Jack” Swigert, and Charles M. Duke, continued intensive training for the mission. NASA announced the selection of the Fra Mauro region of the Moon as the prime landing site for Apollo 13, favored by geologists because it forms an extensive geologic unit around Mare Imbrium, the largest lava plain on the Moon. The Apollo 13 Saturn V rolled out to its launch pad.

      Apollo 11
      The Apollo 11 astronauts meet Canadian Prime Minister Pierre Trudeau, left, on Parliament Hill in Ottawa. Image courtesy of The Canadian Press. The Apollo 11 astronauts meet with Québec premier ministre Jean Lesage in Montréal. Image courtesy of Archives de la Ville de Montreal. Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrinhad returned from their Giantstep Presidential goodwill tour on Nov. 5, 1969. Due to scheduling conflicts, a visit to Canada could not be included in the same time frame as the rest of the tour, so the astronauts made a special trip to Ottawa and Montreal on Dec. 2 and 3, meeting with local officials.
      Apollo 11 astronaut Neil A. Armstrong, left, and comedian Bob Hope perform for the troops in Korat, Thailand. Armstrong, in blue flight suit, shakes hands with servicemen in Long Binh, South Vietnam. Armstrong, left, and Hope entertain the crowd in Cu Chi, South Vietnam. Armstrong joined famed comedian Bob Hope’s USO Christmas tour in December 1969. He participated in several shows at venues in South Vietnam, Thailand, and Guam, kidding around with Hope and answering questions from the assembled service members. He received standing ovations and spent much time shaking hands with the troops. The USO troupe also visited the hospital ship U.S.S. Sanctuary (AH-17) stationed in the South China Sea.

      Apollo 12
      For the first time in nearly four weeks, on Dec. 10, Apollo 12 astronauts Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean stepped out into sunshine and breathed unfiltered air. Since their launch on Nov. 14, 1969, the trio had traveled inside their spacecraft for 10 days on their mission to the Moon and back, wore respirators during their recovery in the Pacific Ocean, stayed in the Mobile Quarantine Facility during the trip from the prime recovery ship U.S.S. Hornet back to Houston, and lived in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Like the Apollo 11 crew before them, Conrad, Gordon, and Bean exhibited no symptoms of any infections with lunar microorganisms and managers declared them fit to be released from quarantine. MSC Director Robert L. Gilruth, other managers, and a crowd of well-wishers greeted Conrad, Gordon, and Bean.
      Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Charles “Pete” Conrad as he emerges from his postflight quarantine. Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Richard F. Gordon as he emerges from his postflight quarantine. Director of the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Robert R. Gilruth and others greet Apollo 12 astronaut Alan L. Bean as he emerges from his postflight quarantine. Addressing the crowd gathered outside the LRL, Conrad commented that “the LRL was really quite pleasant,” but all three were glad to be breathing non man-made air! While the men went home to their families for a short rest, work inside the LRL continued. Scientists began examining the first of the 75 pounds of rocks returned by the astronauts as well as the camera and other hardware they removed from Surveyor 3 for effects of 31 months exposed to the harsh lunar environment. Preliminary analysis of the TV camera that failed early during their first spacewalk on the lunar surface indicated that the failure was due to partial burnout of the Videocon tube, likely caused by the crew accidentally pointing the camera toward the Sun. Other scientists busied themselves with analyzing the data returning from the Apollo Lunar Surface Experiment Package (ALSEP) instruments Conrad and Bean deployed on the lunar surface. Mission planners examining the photographs taken from lunar orbit of the Fra Mauro area were confident that the next mission, Apollo 13, would be able to make a safe landing in that geologically interesting site, the first attempt to land in the lunar highlands.
      After taking their first steps in the sunshine, Apollo 12 astronauts Charles “Pete” Conrad, left, Alan L. Bean, and Richard F. Gordon address a large group of well-wishers outside the Lunar Receiving Laboratory. Bean, left, Gordon, and Conrad during their postflight press conference. Two days after leaving the LRL, Conrad, Gordon, and Bean held their postflight press conference in the MSC auditorium. Addressing the assembled reporters, the astronauts first introduced their wives as their “number one support team,” then provided a film and photo summary of their mission, and answered numerous questions. Among other things, the astronauts praised the spacesuits they wore during the Moon walks, indicating they worked very well and, looking ahead, saw no impediments to longer excursions on future missions. Their only concern centered around the ever-present lunar dust that clung to their suits, raising that as a potential issue for future lunar explorers.
      Director of NASA’s Kennedy Space Center in Florida Kurt H. Debus, right, presents Apollo 12 astronauts Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean with photos of their launch. White House of the Apollo 12 astronauts and their wives with President Richard M. Nixon, First Lady Pat Nixon, and their daughter Tricia Nixon. Conrad, Gordon, and Bean returned to NASA’s Kennedy Space Center (KSC) in Florida on Dec. 17, where their mission began more than a month earlier and nearly ended prematurely when lightning twice struck their Saturn V rocket. KSC Director Kurt H. Debus presented each astronaut with a framed photograph of their launch in front of 8,000 workers assembled in the Vehicle Assembly Building (VAB). Of their nearly ill-fated liftoff Conrad expressed his signature confidence, “Had we to do it again, I would launch exactly under the same conditions.” Guenter Wendt and his pad closeout team had collected a piece of grounding rod from the umbilical tower, cut it into three short pieces, mounted them with the inscription “In fond memory of the electrifying launch of Apollo 12,” and presented them to the astronauts. Three days later, President Richard M. Nixon and First Lady Pat Nixon welcomed Conrad, Gordon, and Bean and their wives Jane, Barbara, and Sue, respectively, to a dinner at the White House. After dinner, they watched a film about the Apollo 12 mission as well as the recently released motion picture Marooned about three astronauts stranded in space. President Nixon requested that the astronauts pay a visit to former President Lyndon B. Johnson, who for many years championed America’s space program, and brief him on their mission, which they did in January 1970.
      The Alan Bean Day parade in Fort Worth. Apollo 12 astronaut Bean and his family deluged by shredded office paper during the parade in his honor in Fort Worth. Image credits: courtesy Fort Worth Star Telegram. On Dec. 22, the city of Fort Worth, Texas, honored native son Bean, with Conrad, Gordon, and their families joining him for the Alan Bean Day festivities. An estimated 150,000 people lined the streets of the city to welcome Bean and his crewmates, dumping a blizzard of ticker tape and shredded office paper on the astronauts and their families during the parade. City workers cleared an estimated 60 tons of paper from the streets after the event. 

      Apollo 13
      The planned Apollo 13 landing site in the Fra Mauro region, in relation to the Apollo 11 and 12 landing sites. Workers place the Spacecraft Lunar Module Adapter over the Apollo 13 Lunar Module. On Dec. 10, 1969, NASA announced the selection of the Fra Mauro region of the Moon as the prime landing site for Apollo 13, located about 110 miles east of the Apollo 12 touchdown point. Geologists favored the Fra Mauro area for exploration because it forms an extensive geologic unit around Mare Imbrium, the largest lava plain on the Moon. Unlike the Apollo 11 and 12 sites located in the flat lunar maria, Fra Mauro rests in the relatively more rugged lunar highlands. The precision landing by the Apollo 12 crew and their extensive orbital photography of the Fra Mauro region gave NASA confidence to attempt a landing at Fra Mauro. Workers in KSC’s VAB had stacked the three stages of Apollo 13’s Saturn V in June and July 1969. On Dec. 10, they topped the rocket with the Apollo 13 spacecraft, comprising the Command and Service Modules (CSM) and the Lunar Module (LM) inside the Spacecraft LM Adapter. Five days later, the Saturn V exited the VAB and made the 3.5-mile journey out to Launch Pad 39A to begin a series of tests to prepare it for the launch of the planned 10-day lunar mission. During their 33.5 hours on the Moon’s surface, Lovell and Haise planned to conduct two four-hour spacewalks to set up the ALSEP, a suite of five investigations designed to collect data about the lunar environment after the astronauts’ departure, and to conduct geologic explorations of the landing site. Mattingly planned to remain in the CSM, conducting geologic observations from lunar orbit including photographing potential future landing sites.
      Apollo 13 astronaut James A. Lovell trains on the deployment of the S-band antenna. Apollo 13 astronaut Fred W. Haise examines one of the lunar surface instruments. During the first of the two spacewalks, Apollo 13 Moon walkers Lovell and Haise planned to deploy the five ALSEP experiments, comprising:
      Charged Particle Lunar Environment Experiment (CPLEE) – flying for the first time, this experiment sought to measure the particle energies of protons and electrons reaching the lunar surface from the Sun. Lunar Atmosphere Detector (LAD) – this experiment used a Cold Cathode Ion Gauge (CCIG) to measure the pressure of the tenuous lunar atmosphere. Lunar Heat Flow Experiment (LHE) – designed to measure the steady-state heat flow from the Moon’s interior. Passive Seismic Experiment (PSE) – similar to the device left on the Moon during Apollo 12, consisted of a sensitive seismometer to record Moon quakes and other seismic activity. Lunar Dust Detector (LDD) – measured the amount of dust deposited on the lunar surface. A Central Station provided command and communications to the ALSEP experiments, while a Radioisotope Thermoelectric Generator using heat from the radioactive decay of a Plutonium-238 sample provided uninterrupted power. Additionally, the astronauts planned to deploy and retrieve the Solar Wind Collector experiment to collect particles of the solar wind, as did the Apollo 11 and 12 crews before them. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts James A. Lovell and Fred W. Haise during the geology field trip to lava fields on the Big Island of Hawaii. Apollo 13 astronauts Lovell, Haise, Young, and Duke participated in a geology training field trip between Dec. 17 and 20 on the Big Island of Hawaii. Geologist Patrick D. Crosland of the National Park Service in Hawaii provided the astronauts with a tour of recent volcanic eruption sites in the Kilauea area, with the thought that the Fra Mauro formation might be of volcanic origin. During several traverses in the Kilauea Volcano area, NASA geologists John W. Dietrich, Uel S. Clanton, and Gary E. Lofgren and US Geological Survey geologists Gordon A. “Gordie” Swann, M.H. “Tim” Hait, and Leon T. “Lee” Silver accompanied the astronauts. The training sessions honed the astronauts’ geology skills and refined procedures for collecting rock samples and for documentary photography.

      Apollo 14
      The Apollo 14 Command and Service Modules shortly after arriving in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida. The Apollo 14 Lunar Module ascent stage shortly after arriving in the MSOB. S69-62154 001 Preparations for the fourth Moon landing mission, Apollo 14, continued as well. At the time tentatively planned for launch in July 1970, mission planners considered the Littrow area on the eastern edge of the Mare Serenitatis, characterized by dark material possibly of volcanic origin, as a potential landing site. Apollo 14 astronauts Commander Alan B. Shepard, CMP Stuart A. Roosa, and LMP Edgar D. Mitchell and their backups Eugene A. Cernan, Ronald E. Evans, and Joe H. Engle had already begun training for their mission. At KSC’s Manned Spacecraft Operations Building (MSOB), the Apollo 14 CSM arrived from its manufacturer North American Rockwell in Downey, California, as did the two stages of the LM from the Grumman Aerospace and Engineering Company in Bethpage, New York, in November 1969. Engineers began tests of the spacecraft shortly after their arrival. The three stages of the Apollo 14 Saturn V were scheduled to arrive at KSC in January 1970.

      To be continued …

      News from around the world in December 1969:
      December 2 – Boeing’s new 747 Jumbo Jet makes its first passenger flight, from Seattle to New York.
      December 3 – George M. Low sworn in as NASA deputy administrator.
      December 4 – A Boy Named Charlie Brown, the first feature film based on the Peanuts comic strip, is released to theaters for the first time.
      December 7 – The animated Christmas special Frosty the Snowman, makes its television debut.
      December 14 – The Jackson 5 make their first appearance on The Ed Sullivan Show.
      December 18 – The sixth James Bond film, On Her Majesty’s Secret Service, held its world premiere in London, with George Lazenby as Agent 007.
      View the full article
  • Check out these Videos

×
×
  • Create New...