Members Can Post Anonymously On This Site
Taken Under the "Wing" of the Small Magellanic Cloud
-
Similar Topics
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
Sols 4398-4401: Holidays Ahead, Rocks Under the Wheels
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on Dec. 17, 2024, at 23:24:13 UTC — Sol 4396, or Martian day 4,396, or the Mars Science Laboratory mission. NASA/JPL-Caltech Earth planning date: Wednesday, Dec. 18, 2024
It’s almost holiday time, and preparations are going ahead on Earth and Mars! For myself that means having a packed suitcase sitting behind me to go on my holiday travels tomorrow morning. For Curiosity that means looking forward to a long semi-rest, as we will not do our usual planning for the geology and mineralogy, but will still be monitoring the atmospheric conditions throughout. Today should have been a normal planning day with lots of contact and remote science. Well, Mars had other ideas.
The regular readers of this blog know that we are driving through quite difficult terrain. The image above gives a good impression on what the rover is dealing with: lots of rocks embedded in sand. I think even hiking would be quite difficult there, let alone driving autonomously. Curiosity, thanks to our excellent rover drivers, makes it successfully most of the time, but here and there Mars just doesn’t play nice. Thus, the rover stopped after 14 meters (about 46 feet) of a planned much longer drive. One of the wheels had caught a low spot between two rocks, and — safety first — the rover stopped and waited for our assessment. The rover drivers found no major problem, as it’s just the middle wheel that hit a bit of a rough patch, and driving can continue in this plan. But better safe than sorry, especially on another planet where there are no tow trucks to get us out of difficulty!
There was, however, quite a bit of discussion before we decided that course of action. Not because of the wheels themselves, but because the rover also stands in a position where it can only communicate directly with Earth in limited ways as the antenna is not facing the expected direction after the sudden stop. Of course, we still have the orbiters to talk to our rover, so we know it’s all fine. And — all things are three — this all happened on the penultimate plan of the year! Friday we’ll be planning a large set of sols that the rover will be executing on its own on Mars, monitoring the atmosphere and taking regular images of its surroundings, while the Earth-based team enjoys the well-deserved break. We really want to make sure to have everything going right on a day like today, so we all can enjoy the holidays without worrying about the rover!
With today being the last day of normal science planning, we had lots of ideas, but had to keep the arm stowed. The drive fault also meant that we had to forego arm movements, as the rover was sitting on a few rocks, and one of the wheels in that little depression that stopped us, all in ways that meant that a shift of rover weight (such as occurs when we move the arm) could make the rover move. Avoiding this situation, the team kept the arm stowed and focused on remote observations today. ChemCam observes a vein target called “Monrovia Peak” and takes remote images on the target “Jawbone Canyon” and up Mount Sharp toward the yardang unit. Mastcam looks at the target “Circle X Ranch” to investigate the material around the rocks embedded in the sand, looks at “Anacapa Island,” which is a vein target, “Channel Islands,” which is an aeolian ripple, and target “Gould Mesa,” which gets the team especially excited as this is the first glimpse of the so-called boxwork structures, which we saw from orbit even before Curiosity landed. Finally, we drive away from the spot that held us up today. Let’s hope Mars has read the script this time!
For the looooong break, we are planning autonomous and remote investigations only, and this starts before Friday’s planning, so that we know all is ok! Thus, the other three sols in today’s planning have Aegis, the automated ChemCam LIBS observation, a Mastcam 360° mosaic, and many, many atmospheric observations. It’s going to be a feast for DAN, REMS, and generally the atmospheric science on Mars, while here on Earth we enjoy the treats of the season. The Curiosity team hopes you do, too. See you in 2025!
Written by Susanne Schwenzer, Planetary Geologist at The Open University
Share
Details
Last Updated Dec 20, 2024 Related Terms
Blogs Explore More
3 min read Perseverance Blasts Past the Top of Jezero Crater Rim
Article
11 hours ago
3 min read Sols 4396-4397: Roving in a Martian Wonderland
Article
2 days ago
2 min read Sols 4393-4395: Weekend Work at the Base of Texoli Butte
Article
4 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA/Quincy Eggert Upside down can be right side up. That’s what NASA researchers determined for tests of an efficient wing concept that could be part of the agency’s answer to making future aircraft sustainable.
Research from NASA’s Advanced Air Transport Technology project involving a 10-foot model could help NASA engineers validate the concept of the Transonic Truss-Braced Wing (TTBW), an aircraft using long, thin wings stabilized by diagonal struts. The TTBW concept’s efficient wings add lift and could result in reduced fuel use and emissions for future commercial single-aisle aircraft. A team at the Flight Loads Laboratory at NASA’s Armstrong Flight Research Center in Edwards, California, are using the model, called the Mock Truss-Braced Wing, to verify the concept and their testing methods.
The model wing and the strut have instruments installed to measure strain, then attached to a rigid vertical test frame. Wire hanging from an overhead portion of the frame stabilizes the model wing for tests. For these tests, researchers chose to mount the 10-foot-long aluminum wing upside down, adding weights to apply stress. The upside-down orientation allows gravity to simulate the lift a wing would experience in flight.
Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. A view from above shows the test structure, the wing, and the strut. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman “A strut reduces the structure needed on the main wing, and the result is less structural weight, and a thinner wing,” said Frank Pena, NASA mock wing test director. “In this case, the test measured the reaction forces at the base of the main wing and at the base of the strut. There is a certain amount of load sharing between the wing and the strut, and we are trying to measure how much of the load stays in the main wing and how much is transferred to the strut.”
To collect those measurements, the team added weights one at a time to the wing and the truss. In another series of tests, engineers tapped the wing structure with an instrumented hammer in key locations, monitoring the results with sensors.
“The structure has natural frequencies it wants to vibrate at depending on its stiffness and mass,” said Ben Park, NASA mock wing ground vibration test director. “Understanding the wing’s frequencies, where they are and how they respond, are key to being able to predict how the wing will respond in flight.”
Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Charlie Eloff, left, and Lucas Oramas add weight to the test wing to apply stress used to determine its limits. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Adding weights to the wingtip, tapping the structure with a hammer, and collecting the vibration response is an unusual testing method because it adds complexity, Park said. The process is worth it, he said, if it provides the data engineers are seeking. The tests are also unique because NASA Armstrong designed, built, and assembled the wing, strut, and test fixture, and conducted the tests.
With the successful loads calibration and vibration tests nearly complete on the 10-foot wing, the NASA Armstrong Flight Loads Laboratory team is working on designing a system and hardware for testing a 15-foot model made from graphite-epoxy composite. The Advanced Air Transport Technology TTBW team at NASA’s Langley Research Center in Hampton, Virginia, is designing and constructing the model, which is called the Structural Wing Experiment Evaluating Truss-bracing.
The larger wing model will be built with a structural design that will more closely resembles what could potentially fly on a future commercial aircraft. The goals of these tests are to calibrate predictions with measured strain data and learn how to test novel aircraft structures such as the TTBW concept.
NASA’s Advanced Air Transport Technology project falls under NASA’s Advanced Air Vehicles Program, which evaluates and develops technologies for new aircraft systems and explores promising air travel concepts.
Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Frank Pena, test director, checks the mock wing. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Samson Truong, from left, and Ben Park, NASA mock wing ground vibration test director, prepare for a vibration test. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Ben Park, NASA mock wing ground vibration test director, taps the wing structure with an instrumented hammer in key locations and sensors monitor the results. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Share
Details
Last Updated Dec 04, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Advanced Air Transport Technology Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Flight Innovation Green Aviation Tech Sustainable Aviation Explore More
4 min read NASA’s C-20A Studies Extreme Weather Events
Article 6 hours ago 3 min read NASA Experts Share Inspiring Stories of Perseverance to Students
Article 2 days ago 3 min read An Electronic Traffic Monitor for Airports
Ground traffic management program saves passengers and airlines time while cutting fuel costs
Article 1 week ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Armstrong Programs & Projects
Armstrong Aeronautics Projects
Armstrong Capabilities & Facilities
View the full article
-
By Space Force
In partnership with the Air Force Research Laboratory, the United States Space Force is currently accepting proposals for USSF University Consortium/Space Strategic Technology Institute 4, focused on Advanced Remote Sensing.
View the full article
-
By NASA
In the ever-evolving aerospace industry, collaboration and mentorship are vital for fostering innovation and growth. Recent achievements highlight the positive impact of Mentor-Protégé Agreements (MPA) facilitated by Jacobs Engineering Group, now known as Amentum Space Exploration Group. Two standout partnerships have demonstrated remarkable success and expansion, underscoring the value of such initiatives.
CODEplus and Amentum Space Exploration Group
The 24-Month MPA between CODEplus and Amentum Space Exploration Group has proven to be a game-changer. Recognized as the FY24 Marshall Space Flight Center (MSFC) Mentor-Protégé Agreement of the Year, this collaboration has significantly boosted CODEplus’s operations. Since the agreement’s inception on March 1, 2023, CODEplus has expanded its workforce to ten full-time employees and currently has two active job requisitions. This growth exemplifies the transformative potential of mentorship in nurturing small businesses within the aerospace sector.
KS Ware and Amentum Space Exploration Group / CH2M Hill
Another exemplary partnership involves KS Ware, which has benefitted from a 36-Month MPA with Amentum Space Exploration Group and CH2M Hill. This agreement has garnered accolades as both the FY23 NASA Agency Mentor-Protégé Agreement of the Year and the FY23 MSFC Mentor-Protégé Agreement of the Year. Through targeted business and technical counseling, KS Ware successfully launched a new drilling division in 2022 and expanded its offerings to include surveying services in 2023. The impact of this mentorship is evident, with a remarkable 30% growth rate reported for KS Ware.
These success stories highlight the critical role of Mentor-Protégé Agreements in empowering small businesses in the aerospace industry. By fostering collaboration and providing essential support, Amentum Space Exploration Group has not only strengthened its partnerships but also contributed to the broader growth and innovation landscape. As the aerospace sector continues to evolve, such initiatives will be essential in driving future success.
Published by: Tracy L. Hudspeth
View the full article
-
By NASA
New Zealand’s stunning scenery has famously provided the backdrop for fictional worlds in fantasy films. A unique cloud that forms over the Otago region of the country’s South Island also evokes the otherworldly, while very much existing in reality.NASA/Lauren Dauphin; USGS Landsat 8’s Operational Land Imager acquired this image of an elongated lenticular cloud, locally nicknamed the “Taieri Pet,” above New Zealand’s South Island on Sept. 7, 2024. Lenticular clouds form when prevailing winds encounter a topographic barrier, such as a mountain range. Wind that is forced to flow up and over the mountains creates a kind of wave in the atmosphere. Air cools at the crest of the wave, and the water vapor it contains condenses into clouds.
Image credit: NASA/Lauren Dauphin; USGS
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.