Members Can Post Anonymously On This Site
Mysterious bottomless hole leading to another dimension - Mel's Hole
-
Similar Topics
-
By NASA
Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Peers Deeper into Mysterious Flame Nebula
This collage of images from the Flame Nebula shows a near-infrared light view from NASA’s Hubble Space Telescope on the left, while the two insets at the right show the near-infrared view taken by NASA’s James Webb Space Telescope. Credits:
NASA, ESA, CSA, M. Meyer (University of Michigan), A. Pagan (STScI) The Flame Nebula, located about 1,400 light-years away from Earth, is a hotbed of star formation less than 1 million years old. Within the Flame Nebula, there are objects so small that their cores will never be able to fuse hydrogen like full-fledged stars—brown dwarfs.
Brown dwarfs, often called “failed stars,” over time become very dim and much cooler than stars. These factors make observing brown dwarfs with most telescopes difficult, if not impossible, even at cosmically short distances from the Sun. When they are very young, however, they are still relatively warmer and brighter and therefore easier to observe despite the obscuring, dense dust and gas that comprises the Flame Nebula in this case.
NASA’s James Webb Space Telescope can pierce this dense, dusty region and see the faint infrared glow from young brown dwarfs. A team of astronomers used this capability to explore the lowest mass limit of brown dwarfs within the Flame Nebula. The result, they found, were free-floating objects roughly two to three times the mass of Jupiter, although they were sensitive down to 0.5 times the mass of Jupiter.
“The goal of this project was to explore the fundamental low-mass limit of the star and brown dwarf formation process. With Webb, we’re able to probe the faintest and lowest mass objects,” said lead study author Matthew De Furio of the University of Texas at Austin.
Image A: Flame Nebula: Hubble and Webb Observations
This collage of images from the Flame Nebula shows a near-infrared light view from NASA’s Hubble Space Telescope on the left, while the two insets at the right show the near-infrared view taken by NASA’s James Webb Space Telescope. Much of the dark, dense gas and dust, as well as the surrounding white clouds within the Hubble image, have been cleared in the Webb images, giving us a view into a more translucent cloud pierced by the infrared-producing objects within that are young stars and brown dwarfs. Astronomers used Webb to take a census of the lowest-mass objects within this star-forming region.
The Hubble image on the left represents light at wavelengths of 1.05 microns (filter F105W) as blue, 1.3 microns (F130N) as green, and 1.39 microns (F129M) as red. The two Webb images on the right represent light at wavelengths of 1.15 microns and 1.4 microns (filters F115W and F140M) as blue, 1.82 microns (F182M) as green, 3.6 microns (F360M) as orange, and 4.3 microns (F430M) as red. NASA, ESA, CSA, M. Meyer (University of Michigan), A. Pagan (STScI) Smaller Fragments
The low-mass limit the team sought is set by a process called fragmentation. In this process large molecular clouds, from which both stars and brown dwarfs are born, break apart into smaller and smaller units, or fragments.
Fragmentation is highly dependent on several factors with the balance between temperature, thermal pressure, and gravity being among the most important. More specifically, as fragments contract under the force of gravity, their cores heat up. If a core is massive enough, it will begin to fuse hydrogen. The outward pressure created by that fusion counteracts gravity, stopping collapse and stabilizing the object (then known as a star). However, fragments whose cores are not compact and hot enough to burn hydrogen continue to contract as long as they radiate away their internal heat.
“The cooling of these clouds is important because if you have enough internal energy, it will fight that gravity,” says Michael Meyer of the University of Michigan. “If the clouds cool efficiently, they collapse and break apart.”
Fragmentation stops when a fragment becomes opaque enough to reabsorb its own radiation, thereby stopping the cooling and preventing further collapse. Theories placed the lower limit of these fragments anywhere between one and ten Jupiter masses. This study significantly shrinks that range as Webb’s census counted up fragments of different masses within the nebula.
“As found in many previous studies, as you go to lower masses, you actually get more objects up to about ten times the mass of Jupiter. In our study with the James Webb Space Telescope, we are sensitive down to 0.5 times the mass of Jupiter, and we are finding significantly fewer and fewer things as you go below ten times the mass of Jupiter,” De Furio explained. “We find fewer five-Jupiter-mass objects than ten-Jupiter-mass objects, and we find way fewer three-Jupiter-mass objects than five-Jupiter-mass objects. We don’t really find any objects below two or three Jupiter masses, and we expect to see them if they are there, so we are hypothesizing that this could be the limit itself.”
Meyer added, “Webb, for the first time, has been able to probe up to and beyond that limit. If that limit is real, there really shouldn’t be any one-Jupiter-mass objects free-floating out in our Milky Way galaxy, unless they were formed as planets and then ejected out of a planetary system.”
Image B: Low Mass Objects within the Flame Nebula in Infrared Light
This near-infrared image of a portion of the Flame Nebula from NASA’s James Webb Space Telescope highlights three low-mass objects, seen in the insets to the right. These objects, which are much colder than protostars, require the sensitivity of Webb’s instruments to detect them. These objects were studied as part of an effort to explore the lowest mass limit of brown dwarfs within the Flame Nebula.
The Webb images represent light at wavelengths of 1.15 microns and 1.4 microns (filters F115W and F140M) as blue, 1.82 microns (F182M) as green, 3.6 microns (F360M) as orange, and 4.3 microns (F430M) as red. NASA, ESA, CSA, STScI, M. Meyer (University of Michigan) Building on Hubble’s Legacy
Brown dwarfs, given the difficulty of finding them, have a wealth of information to provide, particularly in star formation and planetary research given their similarities to both stars and planets. NASA’s Hubble Space Telescope has been on the hunt for these brown dwarfs for decades.
Even though Hubble can’t observe the brown dwarfs in the Flame Nebula to as low a mass as Webb can, it was crucial in identifying candidates for further study. This study is an example of how Webb took the baton—decades of Hubble data from the Orion Molecular Cloud Complex—and enabled in-depth research.
“It’s really difficult to do this work, looking at brown dwarfs down to even ten Jupiter masses, from the ground, especially in regions like this. And having existing Hubble data over the last 30 years or so allowed us to know that this is a really useful star-forming region to target. We needed to have Webb to be able to study this particular science topic,” said De Furio.
“It’s a quantum leap in our capabilities between understanding what was going on from Hubble. Webb is really opening an entirely new realm of possibilities, understanding these objects,” explained astronomer Massimo Robberto of the Space Telescope Science Institute.
This team is continuing to study the Flame Nebula, using Webb’s spectroscopic tools to further characterize the different objects within its dusty cocoon.
“There’s a big overlap between the things that could be planets and the things that are very, very low mass brown dwarfs,” Meyer stated. “And that’s our job in the next five years: to figure out which is which and why.”
These results are accepted for publication in The Astrophysical Journal Letters.
Image C (Animated): Flame Nebula (Hubble and Webb Comparison)
This animated image alternates between a Hubble Space Telescope and a James Webb Space Telescope observation of the Flame Nebula, a nearby star-forming nebula less than 1 million years old. In this comparison, three low-mass objects are highlighted. In Hubble’s observation, the low-mass objects are hidden by the region’s dense dust and gas. However, the objects are brought out in the Webb observation due to Webb’s sensitivity to faint infrared light. NASA, ESA, CSA, Alyssa Pagan (STScI) The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Matthew Brown – mabrown@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Learn more about brown dwarf discoveries
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Universe
Universe Stories
Stars Stories
Share
Details
Last Updated Mar 10, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Brown Dwarfs Goddard Space Flight Center Science & Research Star-forming Nebulae The Universe View the full article
-
By USH
EBANI stands for "Unidentified Anomalous Biological Entity," referring to a mysterious class of airborne phenomena that may be biological rather than mechanical in nature. These entities are often described as elongated, flexible, and tubular, moving through the sky in a serpentine or twisting manner.
They exhibit advanced flight capabilities, including high-speed travel, precise control, and even self-illumination. Some have been observed rendering themselves invisible, raising questions about their energy sources and possible technological origins.
Recent observations have revealed formations of translucent spheres in red, white, and blue, challenging conventional classifications of both biology and aerodynamics.
Some of these entities have a massive structure composed of thousands of clustered spheres. These entities appear to function as an aircraft carrier, releasing these smaller spheres into Earth's atmosphere for an unknown purpose.
While some researchers propose that EBANIs are natural organisms evolving in Earth's upper atmosphere under unfamiliar physical laws, others speculate they may be advanced artificial (eventually biological) constructs, potentially extraterrestrial probes or surveillance devices, given the presence of large structures expelling numerous smaller spheres.
Are they living UFOs, advanced biological organisms that function autonomously within the spheres, without the need for pilots?
View the full article
-
By USH
The legend of the 13 crystal skulls is one of mystery, intrigue, and ancient wisdom. According to myth, these skulls hold the complete knowledge of our galaxy and the history of the human race. Twelve are said to represent different worlds where intelligent life once thrived, while the thirteenth serves as the key that unites them all.
One of the most famous crystal skulls, the Mitchell-Hedges Skull, was discovered in 1927 by archaeologist F.A. Mitchell-Hedges during an excavation at an ancient Mayan site in the dense jungles of Yucatán. This artifact defied conventional understanding of physics and engineering, astonishing scientists at Hewlett-Packard's crystal laboratory, who had never encountered anything like it.
Other crystal skulls have been found across Central and South America, Mexico, and beyond. Both the Maya and Aztecs are believed to have used them in sacred rituals and ceremonies. Additionally, various Native American tribes and indigenous cultures worldwide have passed down similar stories, linking these artifacts to ancient Atlantean and Lemurian civilizations.
Crystals can transfer, retain, and amplify energy, focusing and transmitting it over great distances to similar crystals. They also have the capacity to store vast amounts of data and knowledge, much like a computer, and can even be used for communication. Could it be, then, that these crystal skulls possess the same mysterious power as the crystal 'Atlantis' sphere discovered by Ray Brown in the submerged ruins of an ancient temple near Bimini?
Now, the crystal skulls story spans from ancient Mars to modern-day laboratories, weaving through lost civilizations and CIA psychic programs. As scientists unravel the truth behind these mysterious artifacts, they discover something even more fascinating about the potential of crystal technology.
View the full article
-
By NASA
u0022Every project I have worked has been unique, whether it be a sounding rocket, scientific balloon, or aircraft mission,u0022 said Wallops Flight Facility News Chief Keith Koehler, looking back on his 41 years at NASA. u0022The projects are numerous and great people are involved.u0022NASA/Aubrey Gemignani Name: Keith Koehler
Title: News Chief
Formal Job Classification: Public Affairs Specialist
Organization: Office of Communications, Wallops Flight Facility, Goddard Space Flight Center (Code 130.4)
What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
As news chief, I manage media relations with local, regional, national, and international media. I also write news releases and web features, and I conduct interviews to bring the exciting activities at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore to the public.
What is your educational background?
I have a B.A. in journalism from Murray State University in Kentucky and an M.B.A. from Bellarmine University in Kentucky.
How did you come to work for NASA?
In 1978, while I was at Murray, I joined the NASA Langley Research Center’s Public Affairs Office (now the Office of Communications), in Virginia, as a cooperative education student, a type of internship. In 1984, I joined Wallops as the manager of the Visitor Center while I was working on my master’s. In 1987, I returned to Bellarmine full time to complete the last semester for my master’s. Later that year, after graduating, I returned to the Wallops Visitor Center. In 1990, I became the lead of the Wallops Public Affairs Office, where I have remained most of my career.
Why did you spend almost your entire career at Wallops’ Office of Communications?
When I first came to Wallops, I fell in love with the area. I grew up in the city and I love this rural area. I enjoy working with the people and the scientists from all over the world who come here to do research projects. Wallops projects usually run six months to about two years, so it’s very fast-paced with a lot of activity in many different areas.
I also met my wife Lisa, a native of the area, while at Wallops.
What are some of the most interesting projects you have worked on?
Northrop Grumman’s Antares program, which launches from Wallops, is interesting because of the positive impact the launches have on the community and their importance in getting supplies to the International Space Station. Wallops began in 1945 as a launch facility. Since coming to Wallops in 1984, I have seen it become a world-class launch facility for much larger rockets.
Every project I have worked has been unique, whether it be a sounding rocket, scientific balloon, or aircraft mission. The projects are numerous and great people are involved.
What I have enjoyed most throughout my career is the people. Our people want to share what they are doing with the public.
u0022What makes a good science communicator is the ability to listen,u0022 said Wallops news chief Keith Koehler. u0022You need to listen closely to what is being told to you from the mission support staff, such as a scientists, engineers, or technicians. Then you must be able to take that information and put it in a format that the public can understand.u0022Courtesy of Keith Koehler What do you want to be your legacy?
I would like to be remembered as someone with integrity who was able to bring the message of what we do at Wallops to the public and as someone who supported our educational programs through the development and support of hands-on programs and support of internships.
What advice would you give to someone starting out in science communications?
You need to have a passion for learning and be curious.
We pass on new findings to the public and everything is always changing. You must enjoy communicating with the scientists and engineers and passing on that information to the public in a way they can understand the technical complexities of the science and engineering.
What makes a good science communicator?
What makes a good science communicator is the ability to listen. You need to listen closely to what is being told to you from the mission support staff, such as a scientists, engineers, or technicians. Then you must be able to take that information and put it in a format that the public can understand. You also must be able to listen to the public and understand what they are asking and interested in hearing.
What was your favorite campaign?
That is hard to say. With more than 41 years supporting NASA, the missions and field campaigns have been numerous. Field campaigns took me to Alaska, New Mexico, California, Hawaii, in the air over the mid-Atlantic states, and Puerto Rico.
How has Wallops changed over the years?
In some ways, Wallops has stayed the same, but it also has changed. Wallops has always had a can-do attitude. Mission personnel know the project goals and work toward those goals. Historically, the work has focused on suborbital projects using sounding rockets, scientific balloons, and science aircraft.
Recently, there has been an increase in working with small satellites – project management, development, testing and tracking. In addition, Wallops has greatly expanded its support of commercial launch activities. In 1995, Virginia located the Mid-Atlantic Regional Spaceport at Wallops, which has brought an increase in the launch of orbital rockets. I was part of the core group involved in the birth of the spaceport.
What do you enjoy most about living near Wallops?
The area is quiet, slower paced. The beaches are nice. We are close enough for a day trip to Washington, D.C., but we can live surrounded by nature.
After you retire at the end of this year, what are your plans?
I want to travel nationally and internationally with my wife Lisa. I love vegetable gardening. I also want to spend time with my grandchild. I may do some part-time teaching. I hope to do volunteer work, but have not yet decided exactly what or where.
What is your “six-word memoir”? A six-word memoir describes something in just six words.
Integrity, faithful, patient, inquisitive, caring, trustworthy.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of question and answer profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Share
Details
Last Updated Feb 10, 2025 Related Terms
Goddard Space Flight Center People of Goddard Wallops Flight Facility Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By USH
On January 22, 2025, a mysterious boom echoed through the suburbs of Salt Lake City, Utah, leaving both residents and authorities searching for answers. The incident occurred around 3 AM, startling communities near the state’s capital as a massive explosion shattered in the sky.
Security cameras captured the event, showing the night sky illuminated by a bright flash, followed by the thunderous noise that residents reported hearing from miles away.
“When we’re getting calls from multiple cities miles apart, it’s clear this was something significant, that’s just not typical" said Bill Merritt of the West Valley City Police Department, who described the event as very bizarre.
Speculation about the origin of the boom ranges from a meteorite entering the atmosphere to possible experiments with explosives and even theories of extraterrestrial involvement.
Interestingly, this wasn’t an isolated event. Just 10 days earlier, on January 12, a similar phenomenon occurred in San Dimas, California. In that case, CCTV footage also captured a bright flash followed by a loud explosion, eerily similar to what unfolded in Utah.
When you add these unexplained flashes and booms to the growing list of strange phenomena across the U.S. and other parts of the world—such as unidentified drones, glowing orbs in the sky, flickering streetlights, reports of mysterious fog, and snow that appears to resemble artificial flakes many are left asking: what is really going on and are all these strange events somehow interconnected?
The video above begins with the flash and boom in San Dimas, California, and later features, among other topics, the appearance of unusual snow.View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.