Members Can Post Anonymously On This Site
Mysterious bottomless hole leading to another dimension - Mel's Hole
-
Similar Topics
-
By USH
The legend of the 13 crystal skulls is one of mystery, intrigue, and ancient wisdom. According to myth, these skulls hold the complete knowledge of our galaxy and the history of the human race. Twelve are said to represent different worlds where intelligent life once thrived, while the thirteenth serves as the key that unites them all.
One of the most famous crystal skulls, the Mitchell-Hedges Skull, was discovered in 1927 by archaeologist F.A. Mitchell-Hedges during an excavation at an ancient Mayan site in the dense jungles of Yucatán. This artifact defied conventional understanding of physics and engineering, astonishing scientists at Hewlett-Packard's crystal laboratory, who had never encountered anything like it.
Other crystal skulls have been found across Central and South America, Mexico, and beyond. Both the Maya and Aztecs are believed to have used them in sacred rituals and ceremonies. Additionally, various Native American tribes and indigenous cultures worldwide have passed down similar stories, linking these artifacts to ancient Atlantean and Lemurian civilizations.
Crystals can transfer, retain, and amplify energy, focusing and transmitting it over great distances to similar crystals. They also have the capacity to store vast amounts of data and knowledge, much like a computer, and can even be used for communication. Could it be, then, that these crystal skulls possess the same mysterious power as the crystal 'Atlantis' sphere discovered by Ray Brown in the submerged ruins of an ancient temple near Bimini?
Now, the crystal skulls story spans from ancient Mars to modern-day laboratories, weaving through lost civilizations and CIA psychic programs. As scientists unravel the truth behind these mysterious artifacts, they discover something even more fascinating about the potential of crystal technology.
View the full article
-
By NASA
u0022Every project I have worked has been unique, whether it be a sounding rocket, scientific balloon, or aircraft mission,u0022 said Wallops Flight Facility News Chief Keith Koehler, looking back on his 41 years at NASA. u0022The projects are numerous and great people are involved.u0022NASA/Aubrey Gemignani Name: Keith Koehler
Title: News Chief
Formal Job Classification: Public Affairs Specialist
Organization: Office of Communications, Wallops Flight Facility, Goddard Space Flight Center (Code 130.4)
What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
As news chief, I manage media relations with local, regional, national, and international media. I also write news releases and web features, and I conduct interviews to bring the exciting activities at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore to the public.
What is your educational background?
I have a B.A. in journalism from Murray State University in Kentucky and an M.B.A. from Bellarmine University in Kentucky.
How did you come to work for NASA?
In 1978, while I was at Murray, I joined the NASA Langley Research Center’s Public Affairs Office (now the Office of Communications), in Virginia, as a cooperative education student, a type of internship. In 1984, I joined Wallops as the manager of the Visitor Center while I was working on my master’s. In 1987, I returned to Bellarmine full time to complete the last semester for my master’s. Later that year, after graduating, I returned to the Wallops Visitor Center. In 1990, I became the lead of the Wallops Public Affairs Office, where I have remained most of my career.
Why did you spend almost your entire career at Wallops’ Office of Communications?
When I first came to Wallops, I fell in love with the area. I grew up in the city and I love this rural area. I enjoy working with the people and the scientists from all over the world who come here to do research projects. Wallops projects usually run six months to about two years, so it’s very fast-paced with a lot of activity in many different areas.
I also met my wife Lisa, a native of the area, while at Wallops.
What are some of the most interesting projects you have worked on?
Northrop Grumman’s Antares program, which launches from Wallops, is interesting because of the positive impact the launches have on the community and their importance in getting supplies to the International Space Station. Wallops began in 1945 as a launch facility. Since coming to Wallops in 1984, I have seen it become a world-class launch facility for much larger rockets.
Every project I have worked has been unique, whether it be a sounding rocket, scientific balloon, or aircraft mission. The projects are numerous and great people are involved.
What I have enjoyed most throughout my career is the people. Our people want to share what they are doing with the public.
u0022What makes a good science communicator is the ability to listen,u0022 said Wallops news chief Keith Koehler. u0022You need to listen closely to what is being told to you from the mission support staff, such as a scientists, engineers, or technicians. Then you must be able to take that information and put it in a format that the public can understand.u0022Courtesy of Keith Koehler What do you want to be your legacy?
I would like to be remembered as someone with integrity who was able to bring the message of what we do at Wallops to the public and as someone who supported our educational programs through the development and support of hands-on programs and support of internships.
What advice would you give to someone starting out in science communications?
You need to have a passion for learning and be curious.
We pass on new findings to the public and everything is always changing. You must enjoy communicating with the scientists and engineers and passing on that information to the public in a way they can understand the technical complexities of the science and engineering.
What makes a good science communicator?
What makes a good science communicator is the ability to listen. You need to listen closely to what is being told to you from the mission support staff, such as a scientists, engineers, or technicians. Then you must be able to take that information and put it in a format that the public can understand. You also must be able to listen to the public and understand what they are asking and interested in hearing.
What was your favorite campaign?
That is hard to say. With more than 41 years supporting NASA, the missions and field campaigns have been numerous. Field campaigns took me to Alaska, New Mexico, California, Hawaii, in the air over the mid-Atlantic states, and Puerto Rico.
How has Wallops changed over the years?
In some ways, Wallops has stayed the same, but it also has changed. Wallops has always had a can-do attitude. Mission personnel know the project goals and work toward those goals. Historically, the work has focused on suborbital projects using sounding rockets, scientific balloons, and science aircraft.
Recently, there has been an increase in working with small satellites – project management, development, testing and tracking. In addition, Wallops has greatly expanded its support of commercial launch activities. In 1995, Virginia located the Mid-Atlantic Regional Spaceport at Wallops, which has brought an increase in the launch of orbital rockets. I was part of the core group involved in the birth of the spaceport.
What do you enjoy most about living near Wallops?
The area is quiet, slower paced. The beaches are nice. We are close enough for a day trip to Washington, D.C., but we can live surrounded by nature.
After you retire at the end of this year, what are your plans?
I want to travel nationally and internationally with my wife Lisa. I love vegetable gardening. I also want to spend time with my grandchild. I may do some part-time teaching. I hope to do volunteer work, but have not yet decided exactly what or where.
What is your “six-word memoir”? A six-word memoir describes something in just six words.
Integrity, faithful, patient, inquisitive, caring, trustworthy.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of question and answer profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Share
Details
Last Updated Feb 10, 2025 Related Terms
Goddard Space Flight Center People of Goddard Wallops Flight Facility Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By USH
On January 22, 2025, a mysterious boom echoed through the suburbs of Salt Lake City, Utah, leaving both residents and authorities searching for answers. The incident occurred around 3 AM, startling communities near the state’s capital as a massive explosion shattered in the sky.
Security cameras captured the event, showing the night sky illuminated by a bright flash, followed by the thunderous noise that residents reported hearing from miles away.
“When we’re getting calls from multiple cities miles apart, it’s clear this was something significant, that’s just not typical" said Bill Merritt of the West Valley City Police Department, who described the event as very bizarre.
Speculation about the origin of the boom ranges from a meteorite entering the atmosphere to possible experiments with explosives and even theories of extraterrestrial involvement.
Interestingly, this wasn’t an isolated event. Just 10 days earlier, on January 12, a similar phenomenon occurred in San Dimas, California. In that case, CCTV footage also captured a bright flash followed by a loud explosion, eerily similar to what unfolded in Utah.
When you add these unexplained flashes and booms to the growing list of strange phenomena across the U.S. and other parts of the world—such as unidentified drones, glowing orbs in the sky, flickering streetlights, reports of mysterious fog, and snow that appears to resemble artificial flakes many are left asking: what is really going on and are all these strange events somehow interconnected?
The video above begins with the flash and boom in San Dimas, California, and later features, among other topics, the appearance of unusual snow.View the full article
-
By NASA
Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Newfound Galaxy Class May Indicate Early Black Hole Growth, Webb Finds
A team of astronomers sifted through James Webb Space Telescope data from multiple surveys to compile one of the largest samples of “little red dots” to date. Credits:
NASA, ESA, CSA, STScI, Dale Kocevski (Colby College). In December 2022, less than six months after commencing science operations, NASA’s James Webb Space Telescope revealed something never seen before: numerous red objects that appear small on the sky, which scientists soon called “little red dots” (LRDs). Though these dots are quite abundant, researchers are perplexed by their nature, the reason for their unique colors, and what they convey about the early universe.
A team of astronomers recently compiled one of the largest samples of LRDs to date, nearly all of which existed during the first 1.5 billion years after the big bang. They found that a large fraction of the LRDs in their sample showed signs of containing growing supermassive black holes.
“We’re confounded by this new population of objects that Webb has found. We don’t see analogs of them at lower redshifts, which is why we haven’t seen them prior to Webb,” said Dale Kocevski of Colby College in Waterville, Maine, and lead author of the study. “There’s a substantial amount of work being done to try to determine the nature of these little red dots and whether their light is dominated by accreting black holes.”
Image A: Little Red Dots (NIRCam Image)
A team of astronomers sifted through James Webb Space Telescope data from multiple surveys to compile one of the largest samples of “little red dots” to date. From their sample, they found that these mysterious red objects that appear small on the sky emerge in large numbers around 600 million years after the big bang and undergo a rapid decline in quantity around 1.5 billion years after the big bang. NASA, ESA, CSA, STScI, Dale Kocevski (Colby College). A Potential Peek Into Early Black Hole Growth
A significant contributing factor to the team’s large sample size of LRDs was their use of publicly available Webb data. To start, the team searched for these red sources in the Cosmic Evolution Early Release Science (CEERS) survey before widening their scope to other extragalactic legacy fields, including the JWST Advanced Deep Extragalactic Survey (JADES) and the Next Generation Deep Extragalactic Exploratory Public (NGDEEP) survey.
The methodology used to identify these objects also differed from previous studies, resulting in the census spanning a wide redshift range. The distribution they discovered is intriguing: LRDs emerge in large numbers around 600 million years after the big bang and undergo a rapid decline in quantity around 1.5 billion years after the big bang.
The team looked toward the Red Unknowns: Bright Infrared Extragalactic Survey (RUBIES) for spectroscopic data on some of the LRDs in their sample. They found that about 70 percent of the targets showed evidence for gas rapidly orbiting 2 million miles per hour (1,000 kilometers per second) – a sign of an accretion disk around a supermassive black hole. This suggests that many LRDs are accreting black holes, also known as active galactic nuclei (AGN).
“The most exciting thing for me is the redshift distributions. These really red, high-redshift sources basically stop existing at a certain point after the big bang,” said Steven Finkelstein, a co-author of the study at the University of Texas at Austin. “If they are growing black holes, and we think at least 70 percent of them are, this hints at an era of obscured black hole growth in the early universe.”
Contrary to Headlines, Cosmology Isn’t Broken
When LRDs were first discovered, some suggested that cosmology was “broken.” If all of the light coming from these objects was from stars, it implied that some galaxies had grown so big, so fast, that theories could not account for them.
The team’s research supports the argument that much of the light coming from these objects is from accreting black holes and not from stars. Fewer stars means smaller, more lightweight galaxies that can be understood by existing theories.
“This is how you solve the universe-breaking problem,” said Anthony Taylor, a co-author of the study at the University of Texas at Austin.
Curiouser and Curiouser
There is still a lot up for debate as LRDs seem to evoke even more questions. For example, it is still an open question as to why LRDs do not appear at lower redshifts. One possible answer is inside-out growth: As star formation within a galaxy expands outward from the nucleus, less gas is being deposited by supernovas near the accreting black hole, and it becomes less obscured. In this case, the black hole sheds its gas cocoon, becomes bluer and less red, and loses its LRD status.
Additionally, LRDs are not bright in X-ray light, which contrasts with most black holes at lower redshifts. However, astronomers know that at certain gas densities, X-ray photons can become trapped, reducing the amount of X-ray emission. Therefore, this quality of LRDs could support the theory that these are heavily obscured black holes.
The team is taking multiple approaches to understand the nature of LRDs, including examining the mid-infrared properties of their sample, and looking broadly for accreting black holes to see how many fit LRD criteria. Obtaining deeper spectroscopy and select follow-up observations will also be beneficial for solving this currently “open case” about LRDs.
“There’s always two or more potential ways to explain the confounding properties of little red dots,” said Kocevski. “It’s a continuous exchange between models and observations, finding a balance between what aligns well between the two and what conflicts.”
These results were presented in a press conference at the 245th meeting of the American Astronomical Society in National Harbor, Maryland, and have been submitted for publication in The Astrophysical Journal.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Abigail Major – amajor@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Science – Dale Kocevski (Colby College)
Related Information
3D visualization: CEERS Fly Through visualization and JADES GOODS South Fly Through visualization
Graphic: What is cosmological redshift?
Graphic: Dissecting Supermassive Black Holes
Article: Webb Science: Galaxies Through Time
Web Page: Learn more about black holes
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is a Black Hole?
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Galaxies
Black Holes
Universe
Share
Details
Last Updated Jan 14, 2025 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
Astrophysics Black Holes Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Supermassive Black Holes The Universe View the full article
-
By European Space Agency
The European Space Agency's XMM-Newton has detected rapidly fluctuating X-rays coming from the very edge of a supermassive black hole in the heart of a nearby galaxy. The results paint a fascinating picture that defies how we thought matter falls into such black holes, and points to a potential source of gravitational waves that ESA’s future mission, LISA, could see.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.