Members Can Post Anonymously On This Site
Artemis 1 / Orion Splashdown!
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Crew Module Test Article (CMTA), a full scale mockup of the Orion spacecraft, is seen in the Pacific Ocean as teams practice Artemis recovery operations during Underway Recovery Test-12 onboard USS Somerset off the coast of California, Saturday, March 29, 2025. NASA/Bill Ingalls Preparations for NASA’s next Artemis flight recently took to the seas as a joint NASA and Department of Defense team, led by NASA’s Exploration Ground Systems Program, spent a week aboard the USS Somerset off the coast of California practicing procedures for recovering the Artemis II spacecraft and crew.
Following successful completion of Underway Recovery Test-12 (URT-12) on Monday, NASA’s Landing and Recovery team and their Defense Department counterparts are certified to recover the Orion spacecraft as part of the upcoming Artemis II test flight that will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon.
“This will be NASA’s first crewed mission to the Moon under the Artemis program,” said Lili Villarreal, the landing and recovery director for Artemis II. “A lot of practice led up to this week’s event, and seeing everything come together at sea gives me great confidence that the air, water, ground, and medical support teams are ready to safely recover the spacecraft and the crew for this historic mission.”
A wave breaks inside the well deck of USS Somerset as teams work to recover the Crew Module Test Article (CMTA), a full scale replica of the Orion spacecraft, as they practice Artemis recovery operations during Underway Recovery Test-12 off the coast of California, Thursday, March 27, 2025.NASA/Joel Kowsky Once Orion reenters Earth’s atmosphere, the capsule will keep the crew safe as it slows from nearly 25,000 mph to about 325 mph. Then its system of 11 parachutes will deploy in a precise sequence to slow the capsule and crew to a relatively gentle 20 mph for splashdown off the coast of California. From the time it enters Earth’s atmosphere, the Artemis II spacecraft will fly 1,775 nautical miles to its landing spot in the Pacific Ocean. This direct approach allows NASA to control the amount of time the spacecraft will spend in extremely high temperature ranges.
The Artemis II astronauts trained during URT-11 in February 2024, when they donned Orion Crew Survival System suits and practiced a range of recovery operations at sea using the Crew Module Test Article, a stand -in for their spacecraft.
For the 12th training exercise, NASA astronauts Deniz Burnham and Andre Douglas, along with ESA (European Space Agency) astronaut Luca Parmitano, did the same, moving from the simulated crew module to USS Somerset, with helicopters, a team of Navy divers in small boats, NASA’s open water lead – a technical expert and lead design engineer for all open water operations – as well as Navy and NASA medical teams rehearsing different recovery scenarios.
Grant Bruner, left, and Gary Kirkendall, right, Orion suit technicians, are seen with ESA (European Space Agency) astronaut Luca Parmitano, second from left, and NASA astronauts Deniz Burnham, center, and Andre Douglas, as they prepare to take part in Artemis recovery operations as part of Underway Recovery Test-12 onboard USS Somerset off the coast of California, Thursday, March 27, 2025. NASA/Joel Kowsky “Allowing astronauts to participate when they are not directly involved in a mission gives them valuable experience by exposing them to a lot of different scenarios,” said Glover, who will pilot Artemis II. “Learning about different systems and working with ground control teams also broadens their skillsets and prepares them for future roles. It also allows astronauts like me who are assigned to the mission to experience other roles – in this case, I am serving in the role of Joe Acaba, Chief of the Astronaut Office.”
NASA astronaut and Artemis II pilot Victor Glover, right, speaks to NASA astronauts Andre Douglas and Deniz Burnham as they prepare to take part in practicing Artemis recovery procedures during Underway Recovery Test-12 onboard USS Somerset off the coast of California, Friday, March 28, 2025.NASA/Joel Kowsky NASA astronaut Deniz Burnham smiles after landing in a Navy helicopter onboard USS Somerset during Underway Recovery Test-12 off the coast of California, Thursday, March 27, 2025.NASA/Bill Ingalls As the astronauts arrive safely at the ship for medical checkouts, recovery teams focus on returning the spacecraft and its auxiliary ground support hardware to the amphibious transport dock.
Navy divers attach a connection collar to the spacecraft and an additional line to a pneumatic winch inside the USS Somerset’s well deck, allowing joint NASA and Navy teams to tow Orion toward the ship. A team of sailors and NASA recovery personnel inside the ship manually pull some of the lines to help align Orion with its stand, which will secure the spacecraft for its trip to the shore. Following a safe and precise recovery, sailors will drain the well deck of water, and the ship will make its way back to Naval Base San Diego.
The Artemis II test flight will confirm the foundational systems and hardware needed for human deep space exploration, taking another step toward missions on the lunar surface and helping the agency prepare for human missions to Mars.
About the Author
Allison Tankersley
Public Affairs Specialist
Share
Details
Last Updated Mar 31, 2025 Related Terms
Missions Artemis 2 Exploration Ground Systems Exploration Systems Development Mission Directorate Orion Multi-Purpose Crew Vehicle Explore More
5 min read Old Missions, New Discoveries: NASA’s Data Archives Accelerate Science
Every NASA mission represents a leap into the unknown, collecting data that pushes the boundaries…
Article 2 hours ago 5 min read 20-Year Hubble Study of Uranus Yields New Atmospheric Insights
The ice-giant planet Uranus, which travels around the Sun tipped on its side, is a…
Article 5 hours ago 6 min read She Speaks for the Samples: Meet Dr. Juliane Gross, Artemis Campaign Sample Curation Lead
Article 8 hours ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA/Frank Michaux Technicians from NASA and primary contractor Amentum join the SLS (Space Launch System) rocket with the stacked solid rocket boosters for the Artemis II mission at NASA’s Kennedy Space Center in Florida on March 23, 2025. The core stage is the largest component of the rocket, standing 212 feet tall and weighing about 219,000 pounds with its engines. The stage is the backbone of the rocket, supporting the launch vehicle stage adapter, interim cryogenic propulsion stage, Orion stage adapter, and the Orion spacecraft.
Artemis II is the first crewed test flight under NASA’s Artemis campaign and is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.
Image credit: NASA/Frank Michaux
View the full article
-
By NASA
Based at NASA’s Johnson Space Center in Houston, the Astromaterials Research and Exploration Science Division, or ARES, curates the most extensive collection of extraterrestrial materials on Earth, ranging from microscopic cosmic dust particles to Apollo-era Moon rocks. Soon, ARES’ team of world-leading sample scientists hopes to add something new to its collection – lunar samples from the Moon’s South Pole region.
As the Artemis campaign sample curation lead, Dr. Juliane Gross is helping ARES and NASA prepare to collect and return those samples safely. “I’m responsible for representing the voice of the Moon rocks and advocating for their protection, preservation, and maintaining their integrity during the planning and execution of all stages of the different Artemis sample return missions,” she said.
Juliane Gross leads a geology lesson for Artemis II crew members as part of their field training in Iceland in 2024.NASA Her multifaceted role includes preparing the Johnson facility that will receive new lunar samples, developing curation strategies, and collaborating with mission teams to plan sampling operations, which encompass collection, handling, transport, and storage processes for all stages of Artemis missions. She trains program managers and engineers on the importance of sample return and teaches crew members how to identify lunar samples and collect them without contamination. She also works with the different programs and teams that oversee the vehicles used at different stages of lunar missions – collaborating with the human landing system team around tool storage and delivery to the lunar surface, the Orion Program to coordinate sample stowage for the return to Earth, and Exploration Ground Systems to plan sample recovery after splashdown.
Once samples are returned to Earth, Gross and the ARES curation team will conduct a preliminary examination of the materials and release a sample catalog from which members of the global scientific community may request loans to carry out their respective research.
Working across Artemis teams raised an unexpected but fun challenge for Gross – learning to communicate effectively with colleagues who have different academic and professional backgrounds. “Scientists like me speak a different language than engineers, and we all speak a different language than managers or the general public,” she said. “I have worked hard to find common vocabulary and to ‘translate’ science needs into the different types of languages that exist within the Artemis campaign. I’m trying to use our differences as strengths to enable mission success and to connect and build relationships with all these different teams through my love and passion for the Moon and rocks from the Moon.”
That passion emerged shortly after Gross completed her Ph.D. in geology, while working on lunar samples with the Lunar and Planetary Institute. She went on to become a research scientist with the American Museum of Natural History in New York, and then a tenured professor of planetary sciences at Rutgers University in Piscataway, New Jersey.
In 2019, NASA asked Gross to join the Apollo Next Generation Sample Analysis Program. Under the program, NASA preserved some of the 382 kilograms of lunar samples returned by Apollo missions, keeping them sealed for future generations to open and analyze. “NASA had the foresight to understand that technology would evolve and our level of sophistication for handling and examining samples would greatly increase,” Gross said.
She and two other scientists had the incredible opportunity to open and examine two samples returned by Apollo 17. Their work served as a practice run for Artemis sample returns while building upon the fundamental insights into the shared origin and history of Earth and the Moon that scientists previously derived from other Apollo samples. For example, the team extracted gas from one sample that will provide information about the volatiles that future lunar missions may encounter around the Moon’s South Pole.
“The Apollo Next Generation Sample Analysis Program linked the first generation of lunar explorers from Apollo with future explorers of the Moon with Artemis,” Gross said. “I’m very proud to have played such an important role in this initiative that now feeds forward to Artemis.”
Juliane Gross examines lunar samples returned by Apollo 17 in Johnson Space Center’s Lunar Sample Laboratory Facility. NASA Gross’ connection with NASA began even earlier in her career. She was selected to join the agency-sponsored Antarctic Search for Meteorites team and lived in the deep ice fields of Antarctica for two months with seven other people. “We lived in tiny two-person tents without any support and recovered a total of 263 space rocks under challenging conditions,” she said. “I experienced the powerful forces of Antarctica and traveled 332 miles on skidoos. My body changed in the cold – I stuffed my face with enough butter, chocolate, and peanut M&Ms to last a lifetime and yet I lost weight.”
This formative experience taught Gross to find and celebrate beauty, even in her toughest moments. “I drank tea made with Antarctic glacier ice that is thousands to millions of years old. I will never forget the beautiful bell-like sounds that snow crystals make when being blown across the ice, the rainbow-sparkling ice crystals on a really cold day, the vast expanses of ice sheets looking like oceans frozen in eternity, and the icy bite of the wind on any unprotected skin that made me feel so alive and reminded me how vulnerable and precious life is,” she said. “And I will never ever forget the thrill and utter joy of finding a meteorite that you know no one on this planet has ever seen before you.”
Gross ultimately received the Antarctica Service Medal of the United States Armed Forces from the U.S. Department of Defense for her work.
Juliane Gross returns to McMurdo Station in Antarctica after working in the deep field for two months as part of the Antarctic Search for Meteorites team.Image courtesy of Juliane Gross Transitioning from full-time academia to her current position at NASA has been a big adjustment for Gross, but she has learned to love the change and the growth opportunities that come with it. “Being part of this incredible moment in history when we are about to return to the Moon with Artemis, our Apollo of today, feels so special and humbling that it made the transition easier,” she said.
The job has also increased Gross’ love and excitement for space exploration and reminds her every day why sample return missions are important. “The Moon is a museum of planetary history,” she said. “It has recorded and preserved the changes that affected the Earth-Moon system and is the best and most accessible place in the solar system to study planet-altering processes that have affected our corner of the universe.”
Still, “The Moon is only our next frontier,” she said. “Keep looking up and never give up. Ad astra!”
Watch below to learn about NASA’s rich history of geology training and hear how scientists and engineers are getting ready to bring back samples that will help us learn about the origins of our solar system.
View the full article
-
By NASA
Artemis II crew members and U.S. Navy personnel practice recovery procedures in the Pacific Ocean using a test version of NASA’s Orion spacecraft in February 2024. Credit: NASA NASA and the Department of Defense will host a media event on the recovery operations that will bring the Artemis II astronauts and the agency’s Orion spacecraft home at the conclusion of next year’s mission around the Moon. The in-person event will take place at 3 p.m. PDT on Monday, March 31, at Naval Base San Diego in California.
A team of NASA and Department of Defense personnel are at sea in the Pacific Ocean where splashdown will take place. The team currently is practicing the procedures it will use to recover the astronauts after their more than 600,000 mile journey from Earth and back on the first crewed mission under the Artemis campaign. A test version of Orion and other hardware also will be on-hand for media representatives to view.
Interested media must RSVP no later than 4 p.m. PDT Friday, March 28, to Naval Base San Diego Public Affairs at nbsd.pao@us.navy.mil or 619-556-7359. The start time of the event may change based on the conclusion of testing activities.
Participants include:
Liliana Villarreal, NASA’s Artemis II landing and recovery director, Exploration Ground Systems Program, NASA’s Kennedy Space Center in Florida Capt. Andrew “Andy” Koy, commanding officer of USS Somerset (LPD 25), U.S. Navy Lt. Col. David Mahan, commander, U.S. Air Force’s 1st Air Force, Detachment 3, Patrick Space Force Base, Florida Several astronauts participating in the testing will be available for interviews.
Artemis II will be the first test flight of the SLS (Space Launch System) rocket, Orion spacecraft, and supporting ground system with crew aboard. NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will venture around the Moon and back. The mission is another step toward missions on the lunar surface and helping the agency prepare for future astronaut missions to Mars.
Learn more about Artemis II at:
https://www.nasa.gov/mission/artemis-ii/
-end-
Jim Wilson
Headquarters, Washington
202-358-1100
jim.wilson@nasa.gov
Madison Tuttle/Allison Tankersley
Kennedy Space Center, Florida
321-298-5968/321-867-2468
madison.e.tuttle@nasa.gov / allison.p.tankersley@nasa.gov
Share
Details
Last Updated Mar 25, 2025 LocationNASA Headquarters Related Terms
Artemis 2 Kennedy Space Center NASA Headquarters View the full article
-
By NASA
If you design a new tool for use on Earth, it is easy to test and practice using that tool in its intended environment. But what if that tool is destined for lunar orbit or will be used by astronauts on the surface of the Moon?
NASA’s Simulation and Graphics Branch can help with that. Based at Johnson Space Center in Houston, the branch’s high-fidelity, real-time graphical simulations support in-depth engineering analyses and crew training, ensuring the safety, efficiency, and success of complex space endeavors before execution. The team manages multiple facilities that provide these simulations, including the Prototype Immersive Technologies (PIT) Lab, Virtual Reality Training Lab, and the Systems Engineering Simulator (SES).
Lee Bingham is an aerospace engineer on the simulation and graphics team. His work includes developing simulations and visualizations for the NASA Exploration Systems Simulations team and providing technical guidance on simulation and graphics integration for branch-managed facilities. He also leads the branch’s human-in-the-loop Test Sim and Graphics Team, the Digital Lunar Exploration Sites Unreal Simulation Tool (DUST), and the Lunar Surface Mixed-Reality with the Active Response Gravity Offload System (ARGOS) projects.
Lee Bingham demonstrates a spacewalk simulator for the Gateway lunar space station during NASA’s Tech Day on Capitol Hill in Washington, D.C. Image courtesy of Lee Bingham Bingham is particularly proud of his contributions to DUST, which provides a 3D visualization of the Moon’s South Pole and received Johnson’s Exceptional Software of the Year Award in 2024. “It was designed for use as an early reference to enable candidate vendors to perform initial studies of the lunar terrain and lighting in support of the Strategy and Architecture Office, human landing system, and the Extravehicular Activity and Human Surface Mobility Program,” Bingham explained. DUST has supported several human-in-the-loop studies for NASA. It has also been shared with external collaborators and made available to the public through the NASA Software Catalog.
Bingham has kept busy during his nearly nine years at Johnson and said learning to manage and balance support for multiple projects and customers was very challenging at first. “I would say ‘yes’ to pretty much anything anyone asked me to do and would end up burning myself out by working extra-long hours to meet milestones and deliverables,” he said. “It has been important to maintain a good work-life balance and avoid overcommitting myself while meeting demanding expectations.”
Lee Bingham tests the Lunar Surface Mixed Reality and Active Response Gravity Offload System trainer at Johnson Space Center. Image courtesy of Lee Bingham Bingham has also learned the importance of teamwork and collaboration. “You can’t be an expert at everything or do everything yourself,” he said. “Develop your skills, practice them regularly, and master them over time but be willing to ask for help and advice. And be sure to recognize and acknowledge your coworkers and teammates when they go above and beyond or achieve something remarkable.”
Lee Bingham (left) demonstrates a lunar rover simulator for Apollo 16 Lunar Module Pilot Charlie Duke. Image courtesy of Lee Bingham He hopes that the Artemis Generation will be motivated to tackle difficult challenges and further NASA’s mission to benefit humanity. “Be sure to learn from those who came before you, but be bold and unafraid to innovate,” he advised.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.