Jump to content

48,500 year old zombie virus revived from siberian permafrost, 'What Could Go Wrong'?


Recommended Posts

Posted
48,500 years old Zombie Virus Resurrected In French Lab..As the world warms up, vast tranches of permafrost are melting, releasing material that's been trapped in its icy grip for years. This includes a slew of microbes that have lain dormant for hundreds of millennia in some cases. 

zombi%20virus.jpg

To study the emerging microbes, scientists have now revived a number of these "zombie viruses" from Siberian permafrost, including one thought to be nearly 50,000 years old – a record age for a frozen virus returning to a state capable of infecting other organisms. 

The team behind the work, led by microbiologist Jean-Marie Alempic from the French National Centre for Scientific Research, says these reanimating viruses are potentially a significant threat to public health, and further study needs to be done to assess the danger that these infectious agents could pose as they awake from their icy slumber. 

"One quarter of the Northern Hemisphere is underlain by permanently frozen ground, referred to as permafrost," write the researchers in their paper. 

"Due to climate warming, irreversibly thawing permafrost is releasing organic matter frozen for up to a million years, most of which decompose into carbon dioxide and methane, further enhancing the greenhouse effect." 

The 48,500-year-old amoeba virus is actually one of 13 outlined in a new study currently in preprint, with nine of them thought to be tens of thousands of years old. The researchers established that each one was distinct from all other known viruses in terms of their genome. 

While the record-breaking virus was found beneath a lake, other extraction locations included mammoth wool and the intestines of a Siberian wolf – all buried beneath permafrost. Using live single-cell amoeba cultures, the team proved that the viruses still had the potential to be infectious pathogens. 

We're also seeing huge numbers of bacteria released into the environment as the world warms up, but given the antibiotics at our disposal it might be argued they would prove less threatening. A novel virus – as with SARS-CoV-2 – could be much more problematic for public health, especially as the Arctic becomes more populated. 

"The situation would be much more disastrous in the case of plant, animal, or human diseases caused by the revival of an ancient unknown virus," write the researchers. 

"It is therefore legitimate to ponder the risk of ancient viral particles remaining infectious and getting back into circulation by the thawing of ancient permafrost layers." 

This team has form for diligently digging up viruses in Siberia, with a previous study detailing the discovery of a 30,000-year-old virus. Like the new record holder, that was also a pandoravirus, a giant big enough to be visible using light microscopy. 

The revived virus has been given the name Pandoravirus yedoma, which acknowledges its size and the type of permafrost soil that it was found in. The researchers think there are many more viruses to find too, beyond those that only target amoebas. 

Many of the viruses that will be released as the ice thaws will be completely unknown to us – although it remains to be seen how infectious these viruses will be once they're exposed to the light, heat and oxygen of the outdoor environment. These are all areas that could be investigated in future studies.  

Virologist Eric Delwart from the University of California, San Francisco, agrees that these giant viruses are just the start when it comes to exploring what lies hidden beneath the permafrost. Though Delwart wasn't involved in the current study, he has plenty of experience resuscitating ancient plant viruses. 

"If the authors are indeed isolating live viruses from ancient permafrost, it is likely that the even smaller, simpler mammalian viruses would also survive frozen for eons."

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 5 Min Read 20-Year Hubble Study of Uranus Yields New Atmospheric Insights
      The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region darkened going into winter shadow while the north polar region brightened as northern summer approaches. Credits:
      NASA, ESA, Erich Karkoschka (LPL) The ice-giant planet Uranus, which travels around the Sun tipped on its side, is a weird and mysterious world. Now, in an unprecedented study spanning two decades, researchers using NASA’s Hubble Space Telescope have uncovered new insights into the planet’s atmospheric composition and dynamics. This was possible only because of Hubble’s sharp resolution, spectral capabilities, and longevity. 
      The team’s results will help astronomers to better understand how the atmosphere of Uranus works and responds to changing sunlight. These long-term observations provide valuable data for understanding the atmospheric dynamics of this distant ice giant, which can serve as a proxy for studying exoplanets of similar size and composition.
      When Voyager 2 flew past Uranus in 1986, it provided a close-up snapshot of the sideways planet. What it saw resembled a bland, blue-green billiard ball. By comparison, Hubble chronicled a 20-year story of seasonal changes from 2002 to 2022. Over that period, a team led by Erich Karkoschka of the University of Arizona, and Larry Sromovsky and Pat Fry from the University of Wisconsin used the same Hubble instrument, STIS (the Space Telescope Imaging Spectrograph), to paint an accurate picture of the atmospheric structure of Uranus. 
      Uranus’ atmosphere is mostly hydrogen and helium, with a small amount of methane and traces of water and ammonia. The methane gives Uranus its cyan color by absorbing the red wavelengths of sunlight.
      The Hubble team observed Uranus four times in the 20-year period: in 2002, 2012, 2015, and 2022. They found that, unlike conditions on the gas giants Saturn and Jupiter, methane is not uniformly distributed across Uranus. Instead, it is strongly depleted near the poles. This depletion remained relatively constant over the two decades. However, the aerosol and haze structure changed dramatically, brightening significantly in the northern polar region as the planet approaches its northern summer solstice in 2030.
      The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region darkened going into winter shadow while the north polar region brightened as northern summer approaches. NASA, ESA, Erich Karkoschka (LPL) Uranus takes a little over 84 Earth years to complete a single orbit of the Sun. So, over two decades, the Hubble team has only seen mostly northern spring as the Sun moves from shining directly over Uranus’ equator toward shining almost directly over its north pole in 2030. Hubble observations suggest complex atmospheric circulation patterns on Uranus during this period. The data that are most sensitive to the methane distribution indicate a downwelling in the polar regions and upwelling in other regions. 
      The team analyzed their results in several ways. The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region (left) darkened going into winter shadow while the north polar region (right) brightened as it began to come into a more direct view as northern summer approaches.
      The top row, in visible light, shows how the color of Uranus appears to the human eye as seen through even an amateur telescope. 
      In the second row, the false-color image of the planet is assembled from visible and near-infrared light observations. The color and brightness correspond to the amounts of methane and aerosols. Both of these quantities could not be distinguished before Hubble’s STIS was first aimed at Uranus in 2002. Generally, green areas indicate less methane than blue areas, and red areas show no methane. The red areas are at the limb, where the stratosphere of Uranus is almost completely devoid of methane. 
      The two bottom rows show the latitude structure of aerosols and methane inferred from 1,000 different wavelengths (colors) from visible to near infrared. In the third row, bright areas indicate cloudier conditions, while the dark areas represent clearer conditions. In the fourth row, bright areas indicate depleted methane, while dark areas show the full amount of methane. 
      At middle and low latitudes, aerosols and methane depletion have their own latitudinal structure that mostly did not change much over the two decades of observation.  However, in the polar regions, aerosols and methane depletion behave very differently. 
      In the third row, the aerosols near the north pole display a dramatic increase, showing up as very dark during early northern spring, turning very bright in recent years. Aerosols also seem to disappear at the left limb as the solar radiation disappeared. This is evidence that solar radiation changes the aerosol haze in the atmosphere of Uranus. On the other hand, methane depletion seems to stay quite high in both polar regions throughout the observing period. 
      Astronomers will continue to observe Uranus as the planet approaches northern summer.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
      20 Years of Uranus Observations





      Share








      Details
      Last Updated Mar 31, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center
      Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Ann Jenkins
      Space Telescope Science Institute, Baltimore, Maryland
      Ray Villard
      Space Telescope Science Institute, Baltimore, Maryland

      Related Terms
      Hubble Space Telescope Astrophysics Division Goddard Space Flight Center Planetary Environments & Atmospheres Planetary Science Planets The Solar System Uranus
      View the full article
    • By NASA
      NASA’s Worm logo is displayed in front of the agency’s headquarters in Washington.Credit: NASA For the 13th straight year, NASA has earned the title of Best Place to Work in the Federal Government – large agency – from the Partnership for Public Service. The ranking reflects employee satisfaction and workplace elements across the agency while executing NASA’s mission to explore the unknown and discover new knowledge for the benefit of humanity. 
      “NASA’s greatest asset has always been its people – those who rise to the challenge of leading in air and space,” said NASA acting Administrator Janet Petro. “This recognition reflects a culture of collaboration, innovation, and excellence that fuels our mission every day and defines NASA as the best place to work in the federal government. I’m honored to lead this remarkable team as we continue benefiting humanity and inspiring the world in the process.” 
      Throughout 2024, NASA’s workforce supported the agency’s groundbreaking accomplishments, including landing new science and technology on the Moon with an American company for the first time and launching a new mission to study Jupiter’s icy moon Europa. NASA teams also collaborated to maintain more than 24 years of continuous human exploration and scientific research aboard the International Space Station and unveiled its supersonic quiet aircraft. 
      The agency also shared the wonder of a total eclipse with millions of Americans, conducted the final flight of its Ingenuity helicopter on Mars, and announced the newest class of Artemis Generation astronauts. With the release of its latest Economic Impact Report, NASA demonstrated how its work impacts the U.S. economy, creates value to society, and returns investment to taxpayers. 
      The Partnership for Public Service began to compile the Best Places to Work rankings in 2003 to analyze federal employee’s viewpoints of leadership, work-life balance, and other factors of their job. A formula is used to evaluate employee responses to a federal survey, dividing submissions into four groups: large, midsize, and small agencies, in addition to their subcomponents. 
      Read about the Best Places to Work for 2024 online. 
      To learn more about NASA’s missions, visit: 
      https://www.nasa.gov
      -end- 
      Share
      Details
      Last Updated Mar 07, 2025 Related Terms
      People of NASA Life at NASA Missions NASA Centers & Facilities View the full article
    • By NASA
      The National Society of Professional Engineers recently named Debbie Korth, Orion deputy program manager at Johnson Space Center, as NASA’s 2025 Engineer of the Year. Korth was recognized during an award ceremony at the National Press Club in Washington, D.C., on Feb. 21, alongside honorees from 17 other federal agencies. The annual awards program honors the impactful contributions of federal engineers and their commitment to public service.

      Debbie Korth received the NASA 2025 Engineer of the Year Award from the National Society of Professional Engineers at the National Press Club in Washington, D.C. Image courtesy of Debbie Korth Korth said she was shocked to receive the award. “At NASA there are so many brilliant, talented engineers who I get to work with every day who are so specialized and know so much about a certain area,” she said. “It was very surprising, but very appreciated.”

      Korth has dedicated more than 30 years of her career to NASA, supporting human spaceflight development, integration, and operations across the Space Shuttle, International Space Station, and Orion Programs. Her earliest roles involved extravehicular and mission operations planning, as well as managing spaceflight hardware for shuttle missions and space station crews. Working on hardware such as the Crew Health Care System in the early days of space station planning and development was a unique experience for Korth.

      After spending significant time in Russia collaborating with Russian counterparts to integrate equipment such as a treadmill, cycle ergometer, and blood pressure monitor into their module, Korth recalled, “When we finally got that all delivered and integrated, it was a huge step because we had to have all of that on board before we could put crew members on the station for the first time. I remember feeling a huge sense of accomplishment and happiness that we were able to work through this international partnership and forge those relationships to get that hardware integrated.”

      Korth transitioned to the Orion Program in 2008 and has since served in a variety of leadership roles. In her current role, Korth assists the program manager in the design, development, testing, verification, and certification of Orion, NASA’s next-generation, human-rated spacecraft for Artemis missions. The spacecraft’s first flight test around the Moon during the Artemis I mission was a standout experience for Korth and a major accomplishment for the Orion team.

      “It was a long mission and every day we were learning more and more about the spacecraft and pushing boundaries,” she said. “We really wrung out some of the core systems – systems that were developed individually and for the first time we got to see them work together.”

      Korth said that understanding how different systems interact with each other is what she loves most about engineering. “In systems engineering, you really look at how changes to and the performance of one system affects everything else,” she said. “I like looking across the entire spacecraft and saying, if I have to strengthen this structure to take some additional landing loads, that’s going to add mass to the vehicle, which means I have to look at my parachutes and the thermal protection system to make sure they can handle that increased load.”

      The Orion team is working to achieve two major milestones in 2025 – delivery of the Artemis II Orion spacecraft to the Exploration Ground Systems team that will fuel and integrate Orion with its launch abort system at NASA’s Kennedy Space Center, and the spacecraft’s integration with the Space Launch System rocket, which is currently being stacked. These milestones will support the launch of the first crewed mission on NASA’s path to establishing a long-term presence at the Moon for science and exploration, with liftoff targeted no earlier than April 2026.

      “It’s going to be a big year,” said Korth.
      View the full article
    • By European Space Agency
      The Red Planet’s iconic rusty dust has a much wetter history than previously assumed, find scientists combining European Space Agency (ESA) and NASA spacecraft data with new laboratory experiments on replica Mars dust. The results suggest that Mars rusted early in the planet’s ancient past, when liquid water was more widespread.
      View the full article
    • By Space Force
      The DARC partnership is completing construction at the first of three sites that will host a global network of advanced ground-based sensors.

      View the full article
  • Check out these Videos

×
×
  • Create New...