Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read Webb Maps Full Picture of How Phoenix Galaxy Cluster Forms Stars
      Spectroscopic data collected from NASA’s James Webb Space Telescope is overlayed on an image of the Phoenix cluster that combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory and the Very Large Array (VLA) radio telescope. Credits:
      NASA, CXC, NRAO, ESA, M. McDonald (MIT), M. Reefe (MIT), J. Olmsted (STScI) Discovery proves decades-old theory of galaxy feeding cycle.
      Researchers using NASA’s James Webb Space Telescope have finally solved the mystery of how a massive galaxy cluster is forming stars at such a high rate. The confirmation from Webb builds on more than a decade of studies using NASA’s Chandra X-ray Observatory and Hubble Space Telescope, as well as several ground-based observatories.
      The Phoenix cluster, a grouping of galaxies bound together by gravity 5.8 billion light-years from Earth, has been a target of interest for astronomers due to a few unique properties. In particular, ones that are surprising: a suspected extreme cooling of gas and a furious star formation rate despite a roughly 10 billion solar mass supermassive black hole at its core. In other observed galaxy clusters, the central supermassive black hole powers energetic particles and radiation that prevents gas from cooling enough to form stars. Researchers have been studying gas flows within this cluster to try to understand how it is driving such extreme star formation.
      Image A: Phoenix Cluster (Hubble, Chandra, VLA Annotated)
      Spectroscopic data collected from NASA’s James Webb Space Telescope is overlayed on an image of the Phoenix cluster that combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory and the Very Large Array (VLA) radio telescope. Webb’s powerful sensitivity in the mid-infrared detected the cooling gas that leads to a furious rate of star formation in this massive galaxy cluster. Credit: NASA, CXC, NRAO, ESA, M. McDonald (MIT), M. Reefe (MIT), J. Olmsted (STScI) “We can compare our previous studies of the Phoenix cluster, which found differing cooling rates at different temperatures, to a ski slope,” said Michael McDonald of the Massachusetts Institute of Technology in Cambridge, principal investigator of the program. “The Phoenix cluster has the largest reservoir of hot, cooling gas of any galaxy cluster — analogous to having the busiest chair lift, bringing the most skiers to the top of the mountain. However, not all of those skiers were making it down the mountain, meaning not all the gas was cooling to low temperatures. If you had a ski slope where there were significantly more people getting off the ski lift at the top than were arriving at the bottom, that would be a problem!”
      To date, in the Phoenix cluster, the numbers weren’t adding up, and researchers were missing a piece of the process. Webb has now found those proverbial skiers at the middle of the mountain, in that it has tracked and mapped the missing cooling gas that will ultimately feed star formation. Most importantly, this intermediary warm gas was found within cavities tracing the very hot gas, a searing 18 million degrees Fahrenheit, and the already cooled gas around 18,000 degrees Fahrenheit.
      The team studied the cluster’s core in more detail than ever before with the Medium-Resolution Spectrometer on Webb’s Mid-Infrared Instrument (MIRI). This tool allows researchers to take two-dimenstional spectroscopic data from a region of the sky, during one set of observations.
      “Previous studies only measured gas at the extreme cold and hot ends of the temperature distribution throughout the center of the cluster,” added McDonald. “We were limited — it was not possible to detect the ‘warm’ gas that we were looking for. With Webb, we could do this for the first time.”
      Image B: Phoenix Cluster (Hubble, Chandra, VLA)
      This image of the Phoenix cluster combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory, and the Very Large Array radio telescope. X-rays from Chandra depict extremely hot gas in purple. Optical light data from Hubble show galaxies in yellow, and filaments of cooler gas where stars are forming in light blue. Outburst generated jets, represented in red, are seen in radio waves by the VLA radio telescope. NASA, CXC, NRAO, ESA, M. McDonald (MIT). A Quirk of Nature
      Webb’s capability to detect this specific temperature of cooling gas, around 540,000 degrees Fahrenheit, is in part due to its instrumental capabilities. However, the researchers are getting a little help from nature, as well.
      This oddity involves two very different ionized atoms, neon and oxygen, created in similar environments. At these temperatures, the emission from oxygen is 100 times brighter but is only visible in ultraviolet. Even though the neon is much fainter, it glows in the infrared, which allowed the researchers to take advantage of Webb’s advanced instruments.
      “In the mid-infrared wavelengths detected by Webb, the neon VI signature was absolutely booming,” explained Michael Reefe, also of the Massachusetts Institute of Technology, lead author on the paper published in Nature. “Even though this emission is usually more difficult to detect, Webb’s sensitivity in the mid-infrared cuts through all of the noise.”
      The team now hopes to employ this technique to study more typical galaxy clusters. While the Phoenix cluster is unique in many ways, this proof of concept is an important step towards learning about how other galaxy clusters form stars.The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Read the research paper published in Nature.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Article: Large-scale Structures
      Article: Phoenix Galaxy Cluster’s black hole
      Article: Spectroscopy 101
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Galaxies



      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This version of a mosaic captured by the star tracker cameras aboard NASA’s Europa Clipper on Dec. 4, 2024, features the names of stars within view of the cameras. NASA/JPL-Caltech This mosaic of a star field was made from three images captured Dec. 4, 2024, by star tracker cameras aboard NASA’s Europa Clipper spacecraft. Showing part of the constel-lation Corvus, it’s the first imagery of space the orbiter has captured since its launch on Oct. 14, 2024.NASA/JPL-Caltech The spacecraft’s star trackers help engineers orient the orbiter throughout its long journey to Jupiter’s icy moon Europa.
      Three months after its launch from NASA’s Kennedy Space Center in Florida, the agency’s Europa Clipper has another 1.6 billion miles (2.6 billion kilometers) to go before it reaches Jupiter’s orbit in 2030 to take close-up images of the icy moon Europa with science cameras.
      Meanwhile, a set of cameras serving a different purpose is snapping photos in the space between Earth and Jupiter. Called star trackers, the two imagers look for stars and use them like a compass to help mission controllers know the exact orientation of the spacecraft — information critical for pointing telecommunications antennas toward Earth and sending data back and forth smoothly.
      In early December, the pair of star trackers (formally known as the stellar reference units) captured and transmitted Europa Clipper’s first imagery of space. The picture, composed of three shots, shows tiny pinpricks of light from stars 150 to 300 light-years away. The starfield represents only about 0.1% of the full sky around the spacecraft, but by mapping the stars in just that small slice of sky, the orbiter is able to determine where it is pointed and orient itself correctly.
      The starfield includes the four brightest stars — Gienah, Algorab, Kraz, and Alchiba — of the constellation Corvus, which is Latin for “crow,” a bird in Greek mythology that was associated with Apollo.
      Engineers on NASA’s Europa Clipper mission work with the spacecraft’s star trackers in a clean room at the agency’s Jet Propulsion Laboratory in 2022. Used for orienting the spacecraft, the star trackers are seen here with red covers to protect their lenses.NASA/JPL-Caltech Hardware Checkout
      Besides being interesting to stargazers, the photos signal the successful checkout of the star trackers. The spacecraft checkout phase has been going on since Europa Clipper launched on a SpaceX Falcon Heavy rocket on Oct. 14, 2024.
      “The star trackers are engineering hardware and are always taking images, which are processed on board,” said Joanie Noonan of NASA’s Jet Propulsion Laboratory in Southern California, who leads the mission’s guidance, navigation and control operations. “We usually don’t downlink photos from the trackers, but we did in this case because it’s a really good way to make sure the hardware — including the cameras and their lenses — made it safely through launch.”
      Pointing the spacecraft correctly is not about navigation, which is a separate operation. But orientation using the star trackers is critical for telecommunications as well as for the science operations of the mission. Engineers need to know where the science instruments are pointed. That includes the sophisticated Europa Imaging System (EIS), which will collect images that will help scientists map and examine the moon’s mysterious fractures, ridges, and valleys. For at least the next three years, EIS has its protective covers closed.
      Europa Clipper carries nine science instruments, plus the telecommunications equipment that will be used for a gravity science investigation. During the mission’s 49 flybys of Europa, the suite will gather data that will tell scientists if the icy moon and its internal ocean have the conditions to harbor life.
      The spacecraft already is 53 million miles (85 million kilometers) from Earth, zipping along at 17 miles per second (27 kilometers per second) relative to the Sun, and soon will fly by Mars. On March 1, engineers will steer the craft in a loop around the Red Planet, using its gravity to gain speed.
      More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, managed the launch service for the Europa Clipper spacecraft.
      Find more information about Europa Clipper here:
      https://science.nasa.gov/mission/europa-clipper/
      View an interactive 3D model of NASA’s Europa Clipper News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  
      2025-014
      Share
      Details
      Last Updated Feb 04, 2025 Related Terms
      Europa Clipper Europa Explore More
      7 min read NASA Kennedy Top 24 Stories of 2024
      Article 2 months ago 5 min read NASA’s Europa Clipper: Millions of Miles Down, Instruments Deploying
      Article 2 months ago 5 min read NASA Ocean World Explorers Have to Swim Before They Can Fly
      Article 3 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Michael Flynn, Ross Beyer, and Matt Johnson. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond

      Space Biosciences Star: Michael Flynn
      Michael Flynn, a senior scientist and engineer in the Space Biosciences Branch, has over 35 years of groundbreaking contributions to life support systems and space technologies, including over 120 peer-reviewed publications and multiple prestigious awards. He is being recognized for his leadership in advancing water recycling technologies and his dedication to fostering innovation and mentorship within his team.

      Space Science and Astrobiology Star: Ross Beyer
      Ross Beyer is a planetary scientist in the Planetary Systems Branch for the Search for Extraterrestrial Intelligence (SETI) Institute, with scientific expertise in geomorphology, surface processes, and remote sensing of the solid bodies in our Solar System.  He is recognized for exemplifying leadership and teamwork through his latest selected 5-year proposal to support the Ames Stereo Pipeline, implementing open science processes, and serving as a Co-Investigator on several flight missions.

      Earth Science Star: Matthew Johnson
      Matthew Johnson is a research scientist in the Biospheric Science Branch (code SGE). Matt is recognized for his exemplary productivity in publishing in high-impact journals and success at leading and co-developing competitive proposals, while serving as a mentor and leader.  Matt recently expanded his leadership skills by assuming the position of Assistant Branch Chief of SGE and as an invited lead co-author of the December 2024 PANGEA white paper, which could lead to a new NASA HQ Terrestrial Ecology campaign.

      View the full article
    • By NASA
      Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 2 min read
      Hubble Captures Young Stars Changing Their Environments
      This NASA/ESA Hubble Space Telescope image features the nearest star-forming region to Earth, the Orion Nebula (Messier 42, M42), located some 1,500 light-years away. ESA/Hubble, NASA, and T. Megeath This NASA/ESA Hubble Space Telescope image peers into the dusty recesses of the nearest massive star-forming region to Earth, the Orion Nebula (Messier 42, M42). Just 1,500 light-years away, the Orion Nebula is visible to the unaided eye below the three stars that form the ‘belt’ in the constellation Orion. The nebula is home to hundreds of newborn stars including the subject of this image: the protostars HOPS 150 and HOPS 153.
      These protostars get their names from the Herschel Orion Protostar Survey, conducted with ESA’s Herschel Space Observatory. The object visible in the upper-right corner of this image is HOPS 150: it’s a binary star system where two young protostars orbit each other. Each star has a small, dusty disk of material surrounding it. These stars gather material from their respective dust disks, growing in the process. The dark line that cuts across the bright glow of these protostars is a cloud of gas and dust falling in on the pair of protostars. It is over 2,000 times wider than the distance between Earth and the Sun. Based on the amount of infrared light HOPS 150 is emitting, as compared to other wavelengths it emits, the protostars are mid-way down the path to becoming mature stars.
      Extending across the left side of the image is a narrow, colorful outflow called a jet. This jet comes from the nearby protostar HOPS 153, which is out of the frame. HOPS 153 is significantly younger than its neighbor. That stellar object is still deeply embedded in its birth nebula and enshrouded by a cloud of cold, dense gas. While Hubble cannot penetrate this gas to see the protostar, the jet HOPS 153 emitted is brightly and clearly visible as it plows into the surrounding gas and dust of the Orion Nebula.
      The transition from tightly swaddled protostar to fully fledged star will dramatically affect HOPS 153’s surroundings. As gas falls onto the protostar, its jets spew material and energy into interstellar space, carving out bubbles and heating the gas. By stirring up and warming nearby gas, HOPS 153 may regulate the formation of new stars in its neighborhood and even slow its own growth.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More

      Three-Year Study of Young Stars with NASA’s Hubble Enters New Chapter


      NASA’s Hubble Finds Sizzling Details About Young Star FU Orionis


      Bow Shock Near a Young Star

      Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Jan 16, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Nebulae Protostars Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Exploring the Birth of Stars



      Hubble’s Night Sky Challenge



      Hubble Focus: The Lives of Stars


      This e-book highlights the mission’s recent discoveries and observations related to the birth, evolution, and death of stars.

      View the full article
  • Check out these Videos

×
×
  • Create New...