Jump to content

Colliding Galaxy Pair Takes Flight


HubbleSite

Recommended Posts

low_keystone.png

What looks like a celestial hummingbird is really the result of a collision between a spiral and an elliptical galaxy at a whopping 326 million light- years away. The flat disk of the spiral NGC 2936 is warped into the profile of a bird by the gravitational tug of the companion NGC 2937. The object was first cataloged as a "peculiar galaxy" by Halton Arp in the 1960s. This interacting galaxy duo is collectively called Arp 142.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: Getting Proba-3 fit for flight View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA/Quincy Eggert The design and build of a unique NASA pod, produced to advance computer vision for autonomous aviation, was recently completed in-house at NASA’s Armstrong Flight Research Center in Edwards, California, by using the center’s unique fabrication capabilities. The pod is called the NASA Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE). NASA Armstrong can take an idea from a drawing to flight with help from the center’s Experimental Fabrication Shop.  
      NASA researcher James Cowart adds the top back onto the NASA Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE) sensor pod at NASA’s Armstrong Flight Research Center in Edwards, California, in late February 2024. The pod houses sensors, wiring and cameras. The AIRVUE pod was flown on a helicopter at NASA’s Kennedy Space Center in Florida and is used to collect data for future autonomous aircraft.NASA/Genaro Vavuris NASA subject matter experts developed the idea for the project, after which engineers drew up plans and selected materials. The Experimental Fabrication Shop received those plans and gathered the materials to fabricate the pod.  
      After the pod was built, it moved to NASA Armstrong’s Engineering Support Branch, where electronics technicians and other specialists installed instruments inside of it. Once completed, the pod went through a series of tests at NASA Armstrong to make sure it was safe to fly at NASA’s Kennedy Space Center in Florida on an Airbus H135 helicopter. The engineering team made final adjustments to ensure the pod would collect the correct data prior to installation. More about the design and fabrication process, and the pod’s capabilities, is available to view in a NASA video.
      NASA researchers James Cowart and Elizabeth Nail add sensors, wiring and cameras, to the NASA Airborne Instrumentation for Real-world Video of Urban Environments (AIRVUE) sensor pod at NASA’s Armstrong Flight Research Center in Edwards, California, in late February 2024. The AIRVUE pod was flown on a helicopter at NASA’s Kennedy Space Center in Florida and is used to collect data for future autonomous aircraft.NASA/Genaro Vavuris Share
      Details
      Last Updated Nov 12, 2024 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
      Advanced Air Mobility Aeronautics Ames Research Center Armstrong Flight Research Center Drones & You Glenn Research Center Kennedy Space Center Langley Research Center Explore More
      5 min read NASA Funds New Studies Looking at Future of Sustainable Aircraft
      Article 31 mins ago 4 min read Interview with OCEANOS Instructor María Fernanda Barbarena-Arias
      Article 1 day ago 3 min read Interview with OCEANOS Instructor Samuel Suleiman
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aeronautics
      Advanced Air Mobility Mission
      NASA’s Advanced Air Mobility (AAM) research will transform our communities by bringing the movement of people and goods off the ground, on…
      Armstrong Capabilities & Facilities
      View the full article
    • By NASA
      ESA/Hubble & NASA, O. Fox, L. Jenkins, S. Van Dyk, A. Filippenko, J. Lee and the PHANGS-HST Team, D. de Martin (ESA/Hubble), M. Zamani (ESA/Hubble) This NASA/ESA Hubble Space Telescope image features NGC 1672, a barred spiral galaxy located 49 million light-years from Earth in the constellation Dorado. This galaxy is a multi-talented light show, showing off an impressive array of different celestial lights. Like any spiral galaxy, shining stars fill its disk, giving the galaxy a beautiful glow. Along its two large arms, bubbles of hydrogen gas shine in a striking red light fueled by radiation from infant stars shrouded within. Near the galaxy’s center are some particularly spectacular stars embedded within a ring of hot gas. These newly formed and extremely hot stars emit powerful X-rays. Closer in, at the galaxy’s very center, sits an even brighter source of X-rays, an active galactic nucleus. This X-ray powerhouse makes NGC 1672 a Seyfert galaxy. It forms as a result of heated matter swirling in the accretion disk around NGC 1672’s supermassive black hole.
      See more images of NGC 1672.
      Image credit: ESA/Hubble & NASA, O. Fox, L. Jenkins, S. Van Dyk, A. Filippenko, J. Lee and the PHANGS-HST Team, D. de Martin (ESA/Hubble), M. Zamani (ESA/Hubble)
      View the full article
    • By NASA
      Hubble Space Telescope Home Hubble Captures a Galaxy with… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   2 min read
      Hubble Captures a Galaxy with Many Lights
      This NASA/ESA Hubble Space Telescope image captures the spiral galaxy NGC 1672 with a supernova. ESA/Hubble & NASA, O. Fox, L. Jenkins, S. Van Dyk, A. Filippenko, J. Lee and the PHANGS-HST Team, D. de Martin (ESA/Hubble), M. Zamani (ESA/Hubble)
      Download this image

      This NASA/ESA Hubble Space Telescope image features NGC 1672, a barred spiral galaxy located 49 million light-years from Earth in the constellation Dorado. This galaxy is a multi-talented light show, showing off an impressive array of different celestial lights. Like any spiral galaxy, shining stars fill its disk, giving the galaxy a beautiful glow. Along its two large arms, bubbles of hydrogen gas shine in a striking red light fueled by radiation from infant stars shrouded within. Near the galaxy’s center are some particularly spectacular stars embedded within a ring of hot gas. These newly formed and extremely hot stars emit powerful X-rays. Closer in, at the galaxy’s very center, sits an even brighter source of X-rays, an active galactic nucleus. This X-ray powerhouse makes NGC 1672 a Seyfert galaxy. It forms as a result of heated matter swirling in the accretion disk around NGC 1672’s supermassive black hole.
      Image Before/After Along with its bright young stars and X-ray core, a highlight of this image is the most fleeting and temporary of lights: a supernova, visible in just one of the six Hubble images that make up this composite. Supernova SN 2017GAX was a Type I supernova caused by the core-collapse and subsequent explosion of a giant star that went from invisible to a new light in the sky in just a matter of days. In the image above, the supernova is already fading and is visible as a small green dot just below the crook of the spiral arm on the right side. Astronomers wanted to look for any companion star that the supernova progenitor may have had — something impossible to spot beside a live supernova — so they purposefully captured this image of the fading supernova.
      Recently, NGC 1672 was also among a crop of galaxies imaged with the NASA/ESA/CSA James Webb Space Telescope, showing the ring of gas and the structure of dust in its spiral arms. The image below compares the Webb image with Hubble’s image.
      Image Before/After Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Nov 08, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Spiral Galaxies Stars Supernovae The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Hubble Focus: Galaxies through Space and Time


      Hubble Focus: Galaxies through Space and Time


      Hubble’s Partners in Science


      View the full article
    • By SpaceX
      Starship | Fifth Flight Test
  • Check out these Videos

×
×
  • Create New...