Jump to content

Comet ISON Brings Holiday Fireworks


HubbleSite

Recommended Posts

low_keystone.png

This July 4th, the solar system is showing off some fireworks of its own. Superficially resembling a skyrocket, Comet ISON is hurtling toward the Sun at a whopping 48,000 miles per hour. Unlike a firework, the comet is not combusting, but in fact is pretty cold. Its skyrocket-looking tail is really a streamer of gas and dust bleeding off the icy nucleus. The video shows a sequence of Hubble observations taken over a 43-minute span, compressed into just five seconds. The comet travels 34,000 miles during the exposure sequence.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Technical Group Supervisor for Sequence Planning and Execution and Tactical Mission Lead for the Mars Perseverance rover, Diana Trujillo, speaks to students at Rolling Terrace Elementary School, Monday, March 13, 2023, in Takoma Park, Maryland. Photo Credit: (NASA/Aubrey Gemignani)NASA/Aubrey Gemignani With a new school year on the horizon, NASA is introducing a platform to connect communities with agency experts to share their experiences working on agency missions and programs for the benefit of humanity.
      Continuing a long-standing tradition of connecting the public with science, technology, engineering, and math, NASA Engages augments the agency’s speaker’s bureau program to inspire the Artemis Generation. The platform includes a database of agency employees of various expertise, skillsets, and backgrounds. The public may request a NASA expert to participate in educational, professional, and civic events, either virtually or in person, by submitting a request through the NASA Engages page:
      https://my.nasa.gov/engages/s
      “With NASA Engages, the agency is creating new avenues for communities to learn about STEM, while making genuine connections with the diverse, talented experts within our agency,” said Mike Kincaid, associate administrator, Office of STEM Engagement at NASA Headquarters in Washington. “Representation is key – our ability to meet people where they are is enhanced when our experts reflect the communities they are speaking to. Whether it’s a heliophysics panel in Denver or an elementary school in Florida, anyone can bring NASA to their neighborhood with Engages.”
      Managed by NASA’s Office of STEM Engagement in coordination with the agency’s Office of Diversity and Equal Opportunity and Office of Communications, NASA Engages is open to all types of public speaking engagements. Audiences include preschool to college, libraries and museums, youth organizations, professional and technical organizations, community groups and other non-profit organizations. Engages also is not just limited to speaking engagements – the public may request science fair judges, emcees at award ceremonies, and more.
      Requests should be submitted at least seven weeks in advance for U.S. events to allow adequate lead time for representatives to coordinate support and ensure minimal disruption to their work schedules. Preference will be given to virtual events. International requests can be submitted via email and will soon be available through NASA Engages. In the meantime, submit those requests via email to: HQ-NASAEngages@mail.nasa.gov.
      Participation is voluntary, and while every effort will be made to accommodate requests, there is no guarantee of fulfillment.
      Learn more about NASA and agency programs, visit: 
      https://www.nasa.gov
      -end-
      Abbey Donaldson / Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      abbey.a.donaldson@nasa.gov / gerelle.q.dodson@nasa.gov
      View the full article
    • By Space Force
      Space Systems Command’s Narrowband Satellite Communications program office was originally part of the Navy, delivering communications capabilities in the Ultra High Frequency spectrum to support deployments on land, air and sea, with voice services to data networks.

      View the full article
    • By NASA
      4 Min Read NASA’s Webb Captures Celestial Fireworks Around Forming Star
      L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument). The colors within this mid-infrared image reveal details about the central protostar’s behavior.
      The cosmos seems to come alive with a crackling explosion of pyrotechnics in this new image from NASA’s James Webb Space Telescope. Taken with Webb’s MIRI (Mid-Infrared Instrument), this fiery hourglass marks the scene of a very young object in the process of becoming a star. A central protostar grows in the neck of the hourglass, accumulating material from a thin protoplanetary disk, seen edge-on as a dark line.
      The protostar, a relatively young object of about 100,000 years, is still surrounded by its parent molecular cloud, or large region of gas and dust. Webb’s previous observation of L1527, with NIRCam (Near-Infrared Camera), allowed us to peer into this region and revealed this molecular cloud and protostar in opaque, vibrant colors.
      Image A: L1527 – Webb/MIRI
      L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules. This image includes filters representing 7.7 microns light as blue, 12.8 microns light as green, and 18 microns light as red.
      Both NIRCam and MIRI show the effects of outflows, which are emitted in opposite directions along the protostar’s rotation axis as the object consumes gas and dust from the surrounding cloud. These outflows take the form of bow shocks to the surrounding molecular cloud, which appear as filamentary structures throughout. They are also responsible for carving the bright hourglass structure within the molecular cloud as they energize, or excite, the surrounding matter and cause the regions above and below it to glow. This creates an effect reminiscent of fireworks brightening a cloudy night sky. Unlike NIRCam, however, which mostly shows the light that is reflected off dust, MIRI provides a look into how these outflows affect the region’s thickest dust and gases.
      The areas colored here in blue, which encompass most of the hourglass, show mostly carbonaceous molecules known as polycyclic aromatic hydrocarbons. The protostar itself and the dense blanket of dust and a mixture of gases that surround it are represented in red. (The sparkler-like red extensions are an artifact of the telescopes’s optics). In between, MIRI reveals a white region directly above and below the protostar, which doesn’t show as strongly in the NIRCam view. This region is a mixture of hydrocarbons, ionized neon, and thick dust, which shows that the protostar propels this matter quite far away from it as it messily consumes material from its disk.
      As the protostar continues to age and release energetic jets, it’ll consume, destroy, and push away much of this molecular cloud, and many of the structures we see here will begin to fade. Eventually, once it finishes gathering mass, this impressive display will end, and the star itself will become more apparent, even to our visible-light telescopes.
      The combination of analyses from both the near-infrared and mid-infrared views reveal the overall behavior of this system, including how the central protostar is affecting the surrounding region. Other stars in Taurus, the star-forming region where L1527 resides, are forming just like this, which could lead to other molecular clouds being disrupted and either preventing new stars from forming or catalyzing their development.The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).  
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hanna Braun hbraun@stsci.edu Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      ARTICLE/IMAGE: Webb’s previous observation of L1527, with NIRCam (Near-Infrared Camera)
      VIDEO:   Fly-through the star-forming Pillars of Creation
      INTERACTIVE: Explore star formation via a multi-wavelength view of Herbig-Haro 46/47
      POSTER: L1527 NIRCam poster
      VIDEO: Science Snippets Video: Dust and the formation of Planetary Systems
      More Webb News
      More Webb Images
      Webb Mission Page
      Related For Kids
      What is a nebula?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es una nebulosa?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Stars



      Universe


      Share








      Details
      Last Updated Jul 02, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics James Webb Space Telescope (JWST) Nebulae Protostars Science & Research Star-forming Nebulae Stars The Universe
      View the full article
    • By NASA
      4 min read
      ESA, NASA Solar Observatory Discovers Its 5,000th Comet
      On March 25, 2024, a citizen scientist in the Czech Republic spotted a comet in an image from the Solar and Heliospheric Observatory (SOHO) spacecraft, which has now been confirmed to be the 5,000th comet discovered using SOHO data. SOHO has achieved this milestone over 28 years in space, even though it was never designed to be a comet hunter.
      The 5,000th comet discovered with the Solar and Heliospheric Observatory (SOHO) spacecraft is noted by a small white box in the upper left portion of this image. A zoomed-in inset shows the comet as a faint dot between the white vertical lines. The image was taken on March 25, 2024, by SOHO’s Large Angle and Spectrometric Coronagraph (LASCO), which uses a disk to block the bright Sun and reveal faint features around it. NASA/ESA/SOHO The comet is a small body made of ice and rock that takes only a few years to orbit the Sun. It belongs to the “Marsden group” of comets. This group is thought to be related to comet 96P/Machholz (which SOHO observes when Machholz passes near the Sun every 5.3 years) and is named for the late scientist Brian Marsden who first recognized the group using SOHO observations. Only about 75 of the 5,000 comets discovered with SOHO belong to the Marsden group.
      A joint mission of ESA (European Space Agency) and NASA, SOHO launched in December 1995 to study the Sun and the dynamics in its outer atmosphere, called the corona. A science instrument on SOHO, called the Large Angle and Spectrometric Coronagraph (LASCO), uses an artificial disk to block the blinding light of the Sun so scientists can study the corona and environment immediately around the Sun.
      This also allows SOHO to do something many other spacecraft cannot – see comets flying close to the Sun, known as “sungrazing” comets or “sungrazers.” Many of these comets only brighten when they’re too close to the Sun for other observatories to see and would otherwise go undetected, lost in the bright glare of our star. While scientists expected SOHO to serendipitously find some comets during its mission, the spacecraft’s ability to spot them has made it the most prolific comet-finder in history – discovering more than half of the comets known today.
      In fact, soon after SOHO launched, people around the world began spotting so many comets in its images that mission scientists needed a way to keep track of them all. In the early 2000s, they launched the NASA-funded Sungrazer Project that allows anyone to report comets they find in SOHO images.
      This animation shows the Solar and Heliospheric Observatory’s 5,000th comet (circled) moving across the field relative to background stars. The images in this sequence were taken with the spacecraft’s Large Angle and Spectrometric Coronagraph (LASCO) instrument. NASA/ESA/SOHO SOHO’s 5,000th comet was found by Hanjie Tan, a Sungrazer Project participant who is originally from Guangzhou, China, and is currently pursuing a doctoral degree in astronomy in Prague, Czech Republic. Tan has been participating in the Sungrazer Project since he was 13 years old and is one of the project’s youngest comet discoverers.
      “Since 2009, I’ve discovered over 200 comets,” Tan said. “I got into the Sungrazer Project because I love looking for comets. It’s really exciting to be the first to see comets get bright near the Sun after they’ve been traveling through space for thousands of years.”
      Most of the 5,000 comets discovered using SOHO have been found with the help of an international cadre of volunteer comet hunters – many with no formal scientific training – participating in the Sungrazer Project.
      “Prior to the launch of the SOHO mission and the Sungrazer Project, there were only a couple dozen sungrazing comets on record – that’s all we knew existed,” said Karl Battams, a space scientist at the U.S. Naval Research Lab in Washington, D.C., and the principal investigator for the Sungrazer Project. “The fact that we’ve finally reached this milestone – 5,000 comets – is just unbelievable to me.”
      SOHO’s 5,000th comet was discovered with the help of volunteers participating in the NASA-funded Sungrazer Project.
      Credit: NASA’s Goddard Space Flight Center The vast number of comets discovered using SOHO has allowed scientists to learn more about sungrazing comets and groups of comets that orbit the Sun. Comets discovered by the Sungrazer Project have also helped scientists learn more about the Sun, by watching the comets plunge through our star’s atmosphere like small solar probes.
      “The statistics of 5,000 comets, and looking at their orbits and trajectories through space, is a super unique dataset – it’s really valuable science,” Battams said. “It’s a testament to the countless hours the project participants have put into this. We absolutely would never had reached this milestone if it wasn’t for what the project volunteers have done.”
      The Sungrazer Project is one of many opportunities that anyone can get involved with to help make discoveries with NASA during the Heliophysics Big Year, which extends through the end of 2024. Learn more about SOHO, the Sungrazer Project, and other NASA science projects you can participate in:
      NASA SOHO mission website ESA SOHO website The Sungrazer Project Why ESA and NASA’s SOHO Spacecraft Spots So Many Comets 4,000th Comet Discovered by ESA & NASA Solar Observatory NASA Citizen Science by Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Mar 27, 2024 Related Terms
      Citizen Science Comets Heliophysics Skywatching SOHO (Solar and Heliospheric Observatory) The Solar System The Sun Explore More
      5 min read NASA to Launch Sounding Rockets into Moon’s Shadow During Solar Eclipse


      Article


      2 days ago
      5 min read Sketch the Shape of the Sun for Science During the Solar Eclipse


      Article


      1 week ago
      2 min read NASA Volunteers Find Fifteen Rare “Active Asteroids”


      Article


      2 weeks ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...