Members Can Post Anonymously On This Site
NASA Builds on Investments in US Small Business’ Beneficial Technologies
-
Similar Topics
-
By NASA
Hydrocarbon lake and methane rain clouds on Titan Jenny McElligott/eMITS NASA research has shown that cell-like compartments called vesicles could form naturally in the lakes of Saturn’s moon Titan.
Titan is the only world apart from Earth that is known to have liquid on its surface. However, Titan’s lakes and seas are not filled with water. Instead, they contain liquid hydrocarbons like ethane and methane.
On Earth, liquid water is thought to have been essential for the origin of life as we know it. Many astrobiologists have wondered whether Titan’s liquids could also provide an environment for the formation of the molecules required for life – either as we know it or perhaps as we don’t know it – to take hold there.
New NASA research, published in the International Journal of Astrobiology, outlines a process by which stable vesicles might form on Titan, based on our current knowledge of the moon’s atmosphere and chemistry. The formation of such compartments is an important step in making the precursors of living cells (or protocells).
The process involves molecules called amphiphiles, which can self-organize into vesicles under the right conditions. On Earth, these polar molecules have two parts, a hydrophobic (water-fearing) end and a hydrophilic (water-loving) end. When they are in water, groups of these molecules can bunch together and form ball-like spheres, like soap bubbles, where the hydrophilic part of the molecule faces outward to interact with the water, thereby ‘protecting’ the hydrophobic part on the inside of the sphere. Under the right conditions, two layers can form creating a cell-like ball with a bilayer membrane that encapsulates a pocket of water on the inside.
When considering vesicle formation on Titan, however, the researchers had to take into account an environment vastly different from the early Earth.
Uncovering Conditions on Titan
Huygens captured this aerial view of Titan from an altitude of 33,000 feet. ESA/NASA/JPL/University of Arizona Titan is Saturn’s largest moon and the second largest in our solar system. Titan is also the only moon in our solar system with a substantial atmosphere.
The hazy, golden atmosphere of Titan kept the moon shrouded in mystery for much of human history. However, when NASA’s Cassini spacecraft arrived at Saturn in 2004, our views of Titan changed forever.
Thanks to Cassini, we now know Titan has a complex meteorological cycle that actively influences the surface today. Most of Titan’s atmosphere is nitrogen, but there is also a significant amount of methane (CH4). This methane forms clouds and rain, which falls to the surface to cause erosion and river channels, filling up the lakes and seas. This liquid then evaporates in sunlight to form clouds once again.
This atmospheric activity also allows for complex chemistry to happen. Energy from the Sun breaks apart molecules like methane, and the pieces then reform into complex organic molecules. Many astrobiologists believe that this chemistry could teach us how the molecules necessary for the origin of life formed and evolved on the early Earth.
Building Vesicles on Titan
The new study considered how vesicles might form in the freezing conditions of Titan’s hydrocarbon lakes and seas by focusing on sea-spray droplets, thrown upwards by splashing raindrops. On Titan, both spray droplets and the sea surface could be coated in layers of amphiphiles. If a droplet then lands on the surface of a pond, the two layers of amphiphiles meet to form a double-layered (or bilayer) vesicle, enclosing the original droplet. Over time, many of these vesicles would be dispersed throughout the pond and would interact and compete in an evolutionary process that could lead to primitive protocells.
If the proposed pathway is happening, it would increase our understanding of the conditions in which life might be able to form.
“The existence of any vesicles on Titan would demonstrate an increase in order and complexity, which are conditions necessary for the origin of life,” explains Conor Nixon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We’re excited about these new ideas because they can open up new directions in Titan research and may change how we search for life on Titan in the future.”
NASA’s first mission to Titan is the upcoming Dragonfly rotorcraft, which will explore the surface of the Saturnian moon. While Titan’s lakes and seas are not a destination for Dragonfly (and the mission won’t carry the light-scattering instrument required to detect such vesicles), the mission will fly from location to location to study the moon’s surface composition, make atmospheric and geophysical measurements, and characterize the habitability of Titan’s environment.
News Media Contacts
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
View the full article
-
By NASA
NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker This image, taken by NASA’s New Horizons spacecraft on July 14, 2015, is the most accurate natural color image of Pluto. This natural-color image results from refined calibration of data gathered by New Horizons’ color Multispectral Visible Imaging Camera (MVIC). The processing creates images that would approximate the colors that the human eye would perceive, bringing them closer to “true color” than the images released near the encounter. This single color MVIC scan includes no data from other New Horizons imagers or instruments added. The striking features on Pluto are clearly visible, including the bright expanse of Pluto’s icy, nitrogen-and-methane rich “heart,” Sputnik Planitia.
Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker
View the full article
-
By Amazing Space
Massive Solar Prominence "The Beast" Threatens Eruption? Space Weather Update July 14 2025 NASA SDO
-
By NASA
The crew of NASA’s SpaceX Crew-11 mission sit inside a Dragon training spacecraft at SpaceX in Hawthorne, California. Pictured from left: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui (Credit: SpaceX). NASA’s SpaceX Crew-11 mission is set to launch a four-person crew to the International Space Station later this summer. Some of the crew have volunteered to participate in a series of experiments to address health challenges astronauts may face on deep space missions during NASA’s Artemis campaign and future human expeditions to Mars.
The research during Crew-11 includes simulated lunar landings, tactics to safeguard vision, and other human physiology studies led by NASA’s Human Research Program.
Select crew members will participate in a series of simulated Moon landings, before, during, and after their flight. Using a handheld controller and multiple screens, the astronauts will fly through simulated scenarios created to resemble the lunar South Pole region that Artemis crews plan to visit. This experiment allows researchers to evaluate how different gravitational forces may disorient astronauts and affect their ability to pilot a spacecraft, like a lunar lander.
“Even though many landing tasks are automated, astronauts must still know how to monitor the controls and know when to take over to ensure a safe landing,” said Scott Wood, a neuroscientist at NASA’s Johnson Space Center in Houston coordinating the scientific investigation. “Our study assesses exactly how changes in gravity affect spatial awareness and piloting skills that are important for navigating these scenarios.”
A ground control group completing the same tasks over a similar timeframe will help scientists better understand gravitational effects on human performance. The experiment’s results could inform the pilot training needed for future Artemis crews.
“Experiencing weightlessness for months and then feeling greater levels of gravity on a planet like Mars, for example, may increase the risk of disorientation,” said Wood. “Our goal is to help astronauts adapt to any gravitational change, whether it’s to the Moon, a new planet, or landing back on Earth.”
Other studies during the mission will explore possible ways to treat or prevent a group of eye and brain changes that can occur during long-duration space travel, called spaceflight associated neuro-ocular syndrome (SANS).
Some researchers suspect the redistribution of bodily fluids in constant weightlessness may increase pressure in the head and contribute to SANS. One study will investigate fluid pressure on the brain while another will examine how the body processes B vitamins and whether supplements can affect how astronauts respond to bodily fluid shifts. Participating crew members will test whether a daily B vitamin supplement can eliminate or ease symptoms of SANS. Specific crew members also will wear thigh cuffs to keep bodily fluids from traveling headward.
Crew members also will complete another set of experiments, called CIPHER (Complement of Integrated Protocols for Human Exploration Research), which measures how multiple systems within the human body change in space. The study includes vision assessments, MRI scans, and other medical exams to provide a complete overview of the whole body’s response to long-duration spaceflight.
Several other studies involving human health and performance are also a part of Crew-11’s science portfolio. Crew members will contribute to a core set of measurements called Spaceflight Standard Measures, which collects physical data and biological samples from astronauts and stores them for other comparative studies. Participants will supply biological samples, such as blood and urine, for a study characterizing how spaceflight alters astronauts’ genetic makeup. In addition, volunteers will test different exercise regimens to help scientists explore what activities remain essential for long-duration journeys.
After landing, participating crew members will complete surveys to track any discomfort, such as scrapes or bruises, acquired from re-entry. The data will help clarify whether mission length increases injury risks and could help NASA design landing systems on future spacecraft as NASA prepares to travel to the Moon, Mars, and beyond.
NASA’s Human Research Program pursues methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and aboard the International Space Station, the program investigates how spaceflight affects human bodies and behaviors. Such research drives NASA’s quest to innovate ways that keep astronauts healthy and mission-ready.
Explore More
2 min read NASA Announces Winners of 2025 Human Lander Challenge
Article 2 weeks ago 4 min read NASA, Australia Team Up for Artemis II Lunar Laser Communications Test
Article 2 weeks ago 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
Article 3 weeks ago Keep Exploring Discover More Topics From NASA
Living in Space
Artemis
Human Research Program
Space Station Research and Technology
View the full article
-
By NASA
On June 14 and 16, technicians installed solar panels onto NASA’s Nancy Grace Roman Space Telescope, one of the final steps in assembling the observatory. Collectively called the Solar Array Sun Shield, these panels will power and shade the observatory, enabling all the mission’s observations and helping keep the instruments cool.
In this photo, technicians install solar panels onto the outer portion of NASA’s Nancy Grace Roman Space Telescope. Roman’s inner portion is in the background just left of center. By the end of the year, technicians plan to connect the two halves and complete the Roman observatory. Credit: NASA/Sydney Rohde “At this point, the observatory is about 90% complete,” said Jack Marshall, the Solar Array Sun Shield lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We just need to join two large assemblies, and then we’ll run the whole Roman observatory through a series of tests. We’re currently on track for launch several months earlier than the promised date of no later than May 2027.” The team is working toward launch as early as fall 2026.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Over the course of two days, eight technicians installed Roman's solar panels onto the outer portion of NASA's Nancy Grace Roman Space Telescope. Each of the six panels is about 23 by 33 feet (7 by 10 meters), fitted with photovoltaic cells which will harness energy from sunlight to power the observatory. The solar panels were designed, built, and installed at NASA's Goddard Space Flight Center in Greenbelt, Md.Credit: NASA/Sophia Roberts The Solar Array Sun Shield is made up of six panels, each covered in solar cells. The two central panels will remain fixed to the outer barrel assembly (the observatory’s outer shell) while the other four will deploy once Roman is in space, swinging up to align with the center panels.
The panels will spend the entirety of the mission facing the Sun to provide a steady supply of power to the observatory’s electronics. This orientation will also shade much of the observatory and help keep the instruments cool, which is critical for an infrared observatory. Since infrared light is detectable as heat, excess warmth from the spacecraft’s own components would saturate the detectors and effectively blind the telescope.
The solar panels on NASA’s Nancy Grace Roman Space Telescope are covered in a total of 3,902 solar cells that will convert sunlight directly into electricity much like plants convert sunlight to chemical energy. When tiny bits of light, called photons, strike the cells, some of their energy transfers to electrons within the material. This jolt excites the electrons, which start moving more or jump to higher energy levels. In a solar cell, excited electrons create electricity by breaking free and moving through a circuit, sort of like water flowing through a pipe. The panels are designed to channel that energy to power the observatory.Credit: NASA/Sydney Rohde “Now that the panels have been installed, the outer portion of the Roman observatory is complete,” said Goddard’s Aaron Vigil, a mechanical engineer working on the array. Next, technicians will test deploy the solar panels and the observatory’s “visor” (the deployable aperture cover). The team is also testing the core portion of the observatory, assessing the electronics and conducting a thermal vacuum test to ensure the system operates as planned in the harsh space environment.
This will keep the project on track to connect Roman’s inner and outer segments in November, resulting in a whole observatory by the end of the year that can then undergo pre-launch tests.
Now that the solar panels are installed on the outer portion of NASA’s Nancy Grace Roman Space Telescope, technicians are readying the assembly for vibration testing to ensure it will withstand the extreme shaking experienced during launch.Credit: NASA/Sydney Rohde To virtually tour an interactive version of the telescope, visit: https://roman.gsfc.nasa.gov/interactive/
Download high-resolution video and images from NASA’s Scientific Visualization Studio
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jul 10, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Dark Energy Dark Matter Goddard Space Flight Center Goddard Technology NASA Centers & Facilities Technology The Universe Explore More
6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 3 months ago 4 min read Core Components for NASA’s Roman Space Telescope Pass Major Shake Test
Article 1 month ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
Article 4 months ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.