Jump to content

Recommended Posts

Posted
Solar_snake_spotted_slithering_across_Su Video: 00:00:11

Solar Orbiter has spotted a ‘tube’ of cooler atmospheric gases snaking its way through the Sun’s magnetic field. The observation provides an intriguing new addition to the zoo of features revealed by the ESA-led Solar Orbiter mission, especially since the snake was a precursor to a much larger eruption.

The snake was seen on 5 September 2022, as Solar Orbiter was approaching the Sun for a close pass that took place on 12 October. It is a tube of cool plasma suspended by magnetic fields in the hotter surrounding plasma of the Sun’s atmosphere.

Plasma is a state of matter in which a gas is so hot that its atoms begin to lose some of their outer particles, called electrons. This loss makes the gas electrically charged and therefore susceptible to magnetic fields. All gas in the Sun’s atmosphere is a plasma because the temperature here is more than a million degrees centigrade.

The plasma in the snake is following a particularly long filament of the Sun’s magnetic field that is reaching from one side of the Sun to another.

“You're getting plasma flowing from one side to the other but the magnetic field is really twisted. So you're getting this change in direction because we're looking down on a twisted structure,” says David Long, Mullard Space Science Laboratory (UCL), UK, who is heading up the investigation into the phenomenon.

The movie has been constructed as a time-lapse from images from the Extreme Ultraviolet Imager onboard Solar Orbiter. In reality, the snake took around three hours to complete its journey but at the distances involved in crossing the solar surface that means the plasma must have been travelling at around 170 kilometres per second.

What makes the snake so intriguing is that it began from a solar active region that later erupted, ejecting billions of tonnes of plasma into space. This raises the possibility that the snake was a sort of precursor to this event – and Solar Orbiter caught it all in numerous instruments.

For the spacecraft’s Energetic Particle Detector (EPD), the eruption was one of the most intense solar energetic particles events detected so far by the instrument.

“It's a really nice combination of datasets that we only get from Solar Orbiter,” says David.

More intriguing still is that the plasma from this eruption, known as a coronal mass ejection, happened to sweep over NASA’s Parker Solar Probe, allowing its instruments to measure the contents of the eruption.

Being able to see an eruption take place and then sample the ejected gasses, either with its own instruments or those of another spacecraft, is one of Solar Orbiter’s principal scientific aims. It will allow a better understanding to be developed of solar activity and the way it creates ‘space weather’, which can disrupt satellites and other technology on Earth.

Solar Orbiter is a space mission of international collaboration between ESA and NASA, operated by ESA. It launched on 10 February 2020, and earlier this month celebrated its 1000th day in space.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The six SCALPSS cameras mounted around the base of Blue Ghost will collect imagery during and after descent and touchdown. Using a technique called stereo photogrammetry, researchers at Langley will use the overlapping images to produce a 3D view of the surface. Image courtesy of Firefly. Say cheese again, Moon. We’re coming in for another close-up.
      For the second time in less than a year, a NASA technology designed to collect data on the interaction between a Moon lander’s rocket plume and the lunar surface is set to make the long journey to Earth’s nearest celestial neighbor for the benefit of humanity.
      Developed at NASA’s Langley Research Center in Hampton, Virginia, Stereo Cameras for Lunar Plume-Surface Studies (SCALPSS) is an array of cameras placed around the base of a lunar lander to collect imagery during and after descent and touchdown. Using a technique called stereo photogrammetry, researchers at Langley will use the overlapping images from the version of SCALPSS on Firefly’s Blue Ghost — SCALPSS 1.1 — to produce a 3D view of the surface. An earlier version, SCALPSS 1.0, was on Intuitive Machines’ Odysseus spacecraft that landed on the Moon last February. Due to mission contingencies that arose during the landing, SCALPSS 1.0 was unable to collect imagery of the plume-surface interaction. The team was, however, able to operate the payload in transit and on the lunar surface following landing, which gives them confidence in the hardware for 1.1.
      The SCALPSS 1.1 payload has two additional cameras — six total, compared to the four on SCALPSS 1.0 — and will begin taking images at a higher altitude, prior to the expected onset of plume-surface interaction, to provide a more accurate before-and-after comparison.
      These images of the Moon’s surface won’t just be a technological novelty. As trips to the Moon increase and the number of payloads touching down in proximity to one another grows, scientists and engineers need to be able to accurately predict the effects of landings.
      How much will the surface change? As a lander comes down, what happens to the lunar soil, or regolith, it ejects? With limited data collected during descent and landing to date, SCALPSS will be the first dedicated instrument to measure the effects of plume-surface interaction on the Moon in real time and help to answer these questions.
      “If we’re placing things – landers, habitats, etc. – near each other, we could be sand blasting what’s next to us, so that’s going to drive requirements on protecting those other assets on the surface, which could add mass, and that mass ripples through the architecture,” said Michelle Munk, principal investigator for SCALPSS and acting chief architect for NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “It’s all part of an integrated engineering problem.”
      Under the Artemis campaign, the agency’s current lunar exploration approach, NASA is collaborating with commercial and international partners to establish the first long-term presence on the Moon. On this CLPS (Commercial Lunar Payload Services) initiative delivery carrying over 200 pounds of NASA science experiments and technology demonstrations, SCALPSS 1.1 will begin capturing imagery from before the time the lander’s plume begins interacting with the surface until after the landing is complete.
      The final images will be gathered on a small onboard data storage unit before being sent to the lander for downlink back to Earth. The team will likely need at least a couple of months to
      process the images, verify the data, and generate the 3D digital elevation maps of the surface. The expected lander-induced erosion they reveal probably won’t be very deep — not this time, anyway.
      One of the SCALPSS cameras is visible here mounted to the Blue Ghost lander.Image courtesy of Firefly. “Even if you look at the old Apollo images — and the Apollo crewed landers were larger than these new robotic landers — you have to look really closely to see where the erosion took place,” said Rob Maddock, SCALPSS project manager at Langley. “We’re anticipating something on the order of centimeters deep — maybe an inch. It really depends on the landing site and how deep the regolith is and where the bedrock is.”
      But this is a chance for researchers to see how well SCALPSS will work as the U.S. advances human landing systems as part of NASA’s plans to explore more of the lunar surface.
      “Those are going to be much larger than even Apollo. Those are large engines, and they could conceivably dig some good-sized holes,” said Maddock. “So that’s what we’re doing. We’re collecting data we can use to validate the models that are predicting what will happen.”
      The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development Program.
      NASA is working with several American companies to deliver science and technology to the lunar surface under the CLPS initiative. Through this opportunity, various companies from a select group of vendors bid on delivering payloads for NASA including everything from payload integration and operations, to launching from Earth and landing on the surface of the Moon.

      Share
      Details
      Last Updated Dec 19, 2024 EditorAngelique HerringLocationNASA Langley Research Center Related Terms
      General Explore More
      4 min read Statistical Analysis Using Random Forest Algorithm Provides Key Insights into Parachute Energy Modulator System
      Article 6 hours ago 1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award 
      Article 8 hours ago 2 min read An Evening With the Stars: 10 Years and Counting 
      Article 8 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA Science Live: Parker Solar Probe Nears Historic Close Encounter with the Sun
    • By NASA
      5 Min Read Scientists Share Early Results from NASA’s Solar Eclipse Experiments 
      On April 8, 2024, a total solar eclipse swept across a narrow portion of the North American continent from Mexico’s Pacific coast to the Atlantic coast of Newfoundland, Canada. This photo was taken from Dallas, Texas. Credits:
      NASA/Keegan Barber On April 8, 2024, a total solar eclipse swept across North America, from the western shores of Mexico, through the United States, and into northeastern Canada. For the eclipse, NASA helped fund numerous research projects and called upon citizen scientists in support of NASA’s goal to understand how our home planet is affected by the Sun – including, for example, how our star interacts with Earth’s atmosphere and affects radio communications.  
      At a press briefing on Tuesday, Dec. 10, scientists attending the annual meeting of the American Geophysical Union in Washington, D.C., reported some early results from a few of these eclipse experiments. 
      “Scientists and tens of thousands of volunteer observers were stationed throughout the Moon’s shadow,” said Kelly Korreck, eclipse program manager at NASA Headquarters in Washington. “Their efforts were a crucial part of the Heliophysics Big Year – helping us to learn more about the Sun and how it affects Earth’s atmosphere when our star’s light temporarily disappears from view.”
      Changes in the Corona
      On April 8, the Citizen CATE 2024 (Continental-America Telescopic Eclipse) project stationed 35 observing teams from local communities from Texas to Maine to capture images of the Sun’s outer atmosphere, or corona, during totality. Their goal is to see how the corona changed as totality swept across the continent.
      On Dec. 10, Sarah Kovac, the CATE project manager at the Southwest Research Institute in Boulder, Colorado, reported that, while a few teams were stymied by clouds, most observed totality successfully — collecting over 47,000 images in all. 
      These images were taken in polarized light, or light oriented in different directions, to help scientists better understand the processes that shape the corona.
      This preliminary movie from the Citizen CATE 2024 project stitches together polarized images of the solar corona taken from different sites during the total solar eclipse on April 8, 2024. SwRI/Citizen CATE 2024/Dan Seaton/Derek Lamb Kovac shared the first cut of a movie created from these images. The project is still stitching together all the images into the final, hour-long movie, for release at a later time. 
      “The beauty of CATE 2024 is that we blend cutting-edge professional science with community participants from all walks of life,” Kovac said. “The dedication of every participant made this project possible.” 
      Meanwhile, 50,000 feet above the ground, two NASA WB-57 aircraft chased the eclipse shadow as it raced across the continent, observing above the clouds and extending their time in totality to approximately 6 minutes and 20 seconds. 
      On board were cameras and spectrometers (instruments that analyze different wavelengths of light) built by multiple research teams to study the corona. 
      This image of the total solar eclipse is a combination of 30 50-millisecond exposures taken with a camera mounted on one of NASA’s WB-57 aircraft on April 8, 2024. It was captured in a wavelength of light emitted by ionized iron atoms called Fe XIV. This emission highlights electrified gas, called plasma, at a specific temperature (around 3.2 million degrees Fahrenheit) that often reveals arch-like structures in the corona. B. Justen, O. Mayer, M. Justen, S. Habbal, and M. Druckmuller On Dec. 10, Shadia Habbal of the University of Hawaii, who led one of the teams, reported that their instruments collected valuable data, despite one challenge. Cameras they had mounted on the aircraft’s wings experienced unexpected vibrations, which caused some of the images to be slightly blurred.
      However, all the cameras captured detailed images of the corona, and the spectrometers, which were located in the nose of the aircraft, were not affected. The results were so successful, scientists are already planning to fly similar experiments on the aircraft again.
      “The WB-57 is a remarkable platform for eclipse observations that we will try to capitalize on for future eclipses,” Habbal said. 
      Affecting the Atmosphere
      On April 8, amateur or “ham” radio operators sent and received signals to one another before, during, and after the eclipse as part of the Ham Radio Science Citizen Investigation (HamSCI) Festivals of Eclipse Ionospheric Science. More than 6,350 amateur radio operators generated over 52 million data points to observe how the sudden loss of sunlight during totality affects their radio signals and the ionosphere, an electrified region of Earth’s upper atmosphere. 
      Students from Case Western Reserve University operate radios during the 2024 total solar eclipse. HamSCI/Case Western Reserve University Radio communications inside and outside the path of totality improved at some frequencies (from 1-7 MHz), showing there was a reduction in ionospheric absorption. At higher frequencies (10 MHz and above), communications worsened. 
      Results using another technique, which bounced high-frequency radio waves (3-30 MHz) off the ionosphere, suggests that the ionosphere ascended in altitude during the eclipse and then descended to its normal height afterward. 
      “The project brings ham radio operators into the science community,” said Nathaniel Frissell, a professor at the University of Scranton in Pennsylvania and lead of HamSCI. “Their dedication to their craft made this research possible.”  
      Also looking at the atmosphere, the Nationwide Eclipse Ballooning Project organized student groups across the U.S. to launch balloons into the shadow of the Moon as it crossed the country in April 2024 and during a solar eclipse in October 2023. Teams flew weather sensors and other instruments to study the atmospheric response to the cold, dark shadow. 
      The eclipse’s shadow was captured from a camera aboard Virginia Tech’s balloon as part of the Nationwide Eclipse Ballooning Project on April 8, 2024. Nationwide Eclipse Ballooning Project/Virginia Tech This research, conducted by over 800 students, confirmed that eclipses can generate ripples in Earth’s atmosphere called atmospheric gravity waves. Just as waves form in a lake when water is disturbed, these waves also form in the atmosphere when air is disturbed. This project, led by Angela Des Jardins of Montana State University in Bozeman, also confirmed the presence of these waves during previous solar eclipses. Scientists think the trigger for these waves is a “hiccup” in the tropopause, a layer in Earth’s atmosphere, similar to an atmospheric effect that is observed during sunset. 
      “Half of the teams had little to no experience ballooning before the project,” said Jie Gong, a team science expert and atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But their hard work and research was vital in this finding.”
      By Abbey Interrante and Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md. 
      Share








      Details
      Last Updated Dec 10, 2024 Related Terms
      2024 Solar Eclipse Citizen Science Goddard Space Flight Center Heliophysics Solar Eclipses The Sun Uncategorized Explore More
      8 min read NASA’s Hubble Celebrates Decade of Tracking Outer Planets


      Article


      21 hours ago
      3 min read Annual Science Conference to Highlight NASA Research


      Article


      4 days ago
      2 min read Hubble Spots a Spiral in the Celestial River


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      Researchers from the University of Leeds have detected methane leaking from a faulty pipe in Cheltenham, Gloucestershire, UK, using GHGSat satellite data – part of ESA’s Third Party Mission Programme. This marks the first time a UK methane emission has been identified from space and successfully mitigated.
      View the full article
    • By NASA
      9 Min Read Towards Autonomous Surface Missions on Ocean Worlds
      Artist’s concept image of a spacecraft lander with a robot arm on the surface of Europa. Credits:
      NASA/JPL – Caltech Through advanced autonomy testbed programs, NASA is setting the groundwork for one of its top priorities—the search for signs of life and potentially habitable bodies in our solar system and beyond. The prime destinations for such exploration are bodies containing liquid water, such as Jupiter’s moon Europa and Saturn’s moon Enceladus. Initial missions to the surfaces of these “ocean worlds” will be robotic and require a high degree of onboard autonomy due to long Earth-communication lags and blackouts, harsh surface environments, and limited battery life.
      Technologies that can enable spacecraft autonomy generally fall under the umbrella of Artificial Intelligence (AI) and have been evolving rapidly in recent years. Many such technologies, including machine learning, causal reasoning, and generative AI, are being advanced at non-NASA institutions.  
      NASA started a program in 2018 to take advantage of these advancements to enable future icy world missions. It sponsored the development of the physical Ocean Worlds Lander Autonomy Testbed (OWLAT) at NASA’s Jet Propulsion Laboratory in Southern California and the virtual Ocean Worlds Autonomy Testbed for Exploration, Research, and Simulation (OceanWATERS) at NASA’s Ames Research Center in Silicon Valley, California.
      NASA solicited applications for its Autonomous Robotics Research for Ocean Worlds (ARROW) program in 2020, and for the Concepts for Ocean worlds Life Detection Technology (COLDTech) program in 2021. Six research teams, based at universities and companies throughout the United States, were chosen to develop and demonstrate autonomy solutions on OWLAT and OceanWATERS. These two- to three-year projects are now complete and have addressed a wide variety of autonomy challenges faced by potential ocean world surface missions.
      OWLAT
      OWLAT is designed to simulate a spacecraft lander with a robotic arm for science operations on an ocean world body. The overall OWLAT architecture including hardware and software components is shown in Figure 1. Each of the OWLAT components is detailed below.
      Figure 1. The software and hardware components of the Ocean Worlds Lander Autonomy Testbed and the relationships between them. NASA/JPL – Caltech The hardware version of OWLAT (shown in Figure 2) is designed to physically simulate motions of a lander as operations are performed in a low-gravity environment using a six degrees-of-freedom (DOF) Stewart platform. A seven DOF robot arm is mounted on the lander to perform sampling and other science operations that interact with the environment. A camera mounted on a pan-and-tilt unit is used for perception. The testbed also has a suite of onboard force/torque sensors to measure motion and reaction forces as the lander interacts with the environment. Control algorithms implemented on the testbed enable it to exhibit dynamics behavior as if it were a lightweight arm on a lander operating in different gravitational environments.
      Figure 2. The Ocean Worlds Lander Autonomy Testbed. A scoop is mounted to the end of the testbed robot arm. NASA/JPL – Caltech The team also developed a set of tools and instruments (shown in Figure 3) to enable the performance of science operations using the testbed. These various tools can be mounted to the end of the robot arm via a quick-connect-disconnect mechanism. The testbed workspace where sampling and other science operations are conducted incorporates an environment designed to represent the scene and surface simulant material potentially found on ocean worlds.
      Figure 3. Tools and instruments designed to be used with the testbed. NASA/JPL – Caltech The software-only version of OWLAT models, visualizes, and provides telemetry from a high-fidelity dynamics simulator based on the Dynamics And Real-Time Simulation (DARTS) physics engine developed at JPL. It replicates the behavior of the physical testbed in response to commands and provides telemetry to the autonomy software. A visualization from the simulator is shown on Figure 4.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Figure 7. Screenshot of OceanWATERS lander on a terrain modeled from the Atacama Desert. A scoop operation has just been completed. NASA/JPL – Caltech The autonomy software module shown at the top in Figure 1 interacts with the testbed through a Robot Operating System (ROS)-based interface to issue commands and receive telemetry. This interface is defined to be identical to the OceanWATERS interface. Commands received from the autonomy module are processed through the dispatcher/scheduler/controller module (blue box in Figure 1) and used to command either the physical hardware version of the testbed or the dynamics simulation (software version) of the testbed. Sensor information from the operation of either the software-only or physical testbed is reported back to the autonomy module using a defined telemetry interface. A safety and performance monitoring and evaluation software module (red box in Figure 1) ensures that the testbed is kept within its operating bounds. Any commands causing out of bounds behavior and anomalies are reported as faults to the autonomy software module.
      Figure 5. Erica Tevere (at the operator’s station) and Ashish Goel (at the robot arm) setting up the OWLAT testbed for use. NASA/JPL – Caltech OceanWATERS
      At the time of the OceanWATERS project’s inception, Jupiter’s moon Europa was planetary science’s first choice in searching for life. Based on ROS, OceanWATERS is a software tool that provides a visual and physical simulation of a robotic lander on the surface of Europa (see Figure 6). OceanWATERS realistically simulates Europa’s celestial sphere and sunlight, both direct and indirect. Because we don’t yet have detailed information about the surface of Europa, users can select from terrain models with a variety of surface and material properties. One of these models is a digital replication of a portion of the Atacama Desert in Chile, an area considered a potential Earth-analog for some extraterrestrial surfaces.
      Figure 6. Screenshot of OceanWATERS. NASA/JPL – Caltech JPL’s Europa Lander Study of 2016, a guiding document for the development of OceanWATERS, describes a planetary lander whose purpose is collecting subsurface regolith/ice samples, analyzing them with onboard science instruments, and transmitting results of the analysis to Earth.
      The simulated lander in OceanWATERS has an antenna mast that pans and tilts; attached to it are stereo cameras and spotlights. It has a 6 degree-of-freedom arm with two interchangeable end effectors—a grinder designed for digging trenches, and a scoop for collecting ground material. The lander is powered by a simulated non-rechargeable battery pack. Power consumption, the battery’s state, and its remaining life are regularly predicted with the Generic Software Architecture for Prognostics (GSAP) tool. To simulate degraded or broken subsystems, a variety of faults (e.g., a frozen arm joint or overheating battery) can be “injected” into the simulation by the user; some faults can also occur “naturally” as the simulation progresses, e.g., if components become over-stressed. All the operations and telemetry (data measurements) of the lander are accessible via an interface that external autonomy software modules can use to command the lander and understand its state. (OceanWATERS and OWLAT share a unified autonomy interface based on ROS.) The OceanWATERS package includes one basic autonomy module, a facility for executing plans (autonomy specifications) written in the PLan EXecution Interchange Language, or PLEXIL. PLEXIL and GSAP are both open-source software packages developed at Ames and available on GitHub, as is OceanWATERS.
      Mission operations that can be simulated by OceanWATERS include visually surveying the landing site, poking at the ground to determine its hardness, digging a trench, and scooping ground material that can be discarded or deposited in a sample collection bin. Communication with Earth, sample analysis, and other operations of a real lander mission, are not presently modeled in OceanWATERS except for their estimated power consumption. Figure 7 is a video of OceanWATERS running a sample mission scenario using the Atacama-based terrain model.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Figure 7. Screenshot of OceanWATERS lander on a terrain modeled from the Atacama Desert. A scoop operation has just been completed. NASA/JPL – Caltech Because of Earth’s distance from the ocean worlds and the resulting communication lag, a planetary lander should be programmed with at least enough information to begin its mission. But there will be situation-specific challenges that will require onboard intelligence, such as deciding exactly where and how to collect samples, dealing with unexpected issues and hardware faults, and prioritizing operations based on remaining power. 
      Results
      All six of the research teams funded by the ARROW and COLDTech programs used OceanWATERS to develop ocean world lander autonomy technology and three of those teams also used OWLAT. The products of these efforts were published in technical papers, and resulted in development of software that may be used or adapted for actual ocean world lander missions in the future. The following table summarizes the ARROW and COLDTech efforts.
        Principal Investigator (PI) PI Institution Project Testbed Used Purpose of Project ARROW Projects Jonathan Bohren Honeybee Robotics Stochastic PLEXIL (SPLEXIL) OceanWATERS Extended PLEXIL with stochastic decision-making capabilities by employing reinforcement learning techniques. Pooyan Jamshidi University of South Carolina Resource Adaptive Software Purpose-Built for Extraordinary Robotic Research Yields (RASPBERRY SI) OceanWATERS & OWLAT Developed software algorithms and tools for fault root cause identification, causal debugging, causal optimization, and causal-induced verification. COLDTech Projects Eric Dixon Lockheed Martin Causal And Reinforcement Learning (CARL) for COLDTech OceanWATERS Integrated a model of JPL’s mission-ready Cold Operable Lunar Deployable Arm (COLDarm) into OceanWATERS and applied image analysis, causal reasoning, and machine learning models to identify and mitigate the root causes of faults, such as ice buildup on the arm’s end effector. Jay McMahon University of Colorado Robust Exploration with Autonomous Science On-board, Ranked Evaluation of Contingent Opportunities for Uninterrupted Remote Science Exploration (REASON-RECOURSE) OceanWATERS Applied automated planning with formal methods to maximize science return of the lander while minimizing communication with ground team on Earth. Melkior Ornik U Illinois, Urbana-Champaign aDaptive, ResIlient Learning-enabLed oceAn World AutonomY (DRILLAWAY) OceanWATERS & OWLAT Developed autonomous adaptation to novel terrains and selecting scooping actions based on the available image data and limited experience by transferring the scooping procedure learned from a low-fidelity testbed to the high-fidelity OWLAT testbed. Joel Burdick Caltech Robust, Explainable Autonomy for Scientific Icy Moon Operations (REASIMO) OceanWATERS & OWLAT Developed autonomous 1) detection and identification of off-nominal conditions and procedures for recovery from those conditions, and 2) sample site selection Acknowledgements: The portion of the research carried out at the Jet Propulsion Laboratory, California Institute of Technology was performed under a contract with the National Aeronautics and Space Administration (80NM0018D0004).  The portion of the research carried out by employees of KBR Wyle Services LLC at NASA Ames Research Center was performed under a contract with the National Aeronautics and Space Administration (80ARC020D0010). Both were funded by the Planetary Science Division ARROW and COLDTech programs.
      Project Leads: Hari Nayar (NASA Jet Propulsion Laboratory, California Institute of Technology), K. Michael Dalal (KBR, Inc. at NASA Ames Research Center)
      Sponsoring Organizations: NASA SMD PESTO
      View the full article
  • Check out these Videos

×
×
  • Create New...