Jump to content

Artemis I return for launch


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Sarah Ryan is the Raptor engine lead for NASA’s HLS (Human Landing System) Program at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “With Artemis, we’re moving beyond what NASA did with Apollo and that’s really inspiring, especially to our younger workforce. We’re trying to push farther and it’s really going to drive a lot of technology development on the way there,” Ryan said. “This is a dream come true to be working on Artemis and solving problems so humanity can get back to the Moon then on to Mars.” NASA/Ken Hall A passion for puzzles, problem-solving, and propulsion led Sarah Ryan – a native of Columbus, Ohio – to her current position as Raptor engine lead for NASA’s HLS (Human Landing System) insight team at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The SpaceX Raptor rocket engine powers the company’s Starship and Super Heavy rocket. SpaceX will land astronauts on the Moon for NASA’s Artemis III and Artemis IV missions using the Starship HLS. NASA’s Artemis campaign aims to land the first woman, first person of color, and first international partner astronaut on the Moon.
      “My team looks at how the components of the Raptor engine work together. Then, we evaluate the performance of the full system to make sure it will accomplish the NASA HLS and Artemis missions,” Ryan said. “I get to see lots of pieces and parts of the puzzle and then look at the system as a whole to make sure it meets NASA’s needs.”
      While earning a bachelor’s degree from Case Western Reserve University in Cleveland with a dual major in aerospace engineering and mechanical engineering, Ryan had an internship at NASA Marshall, working on a payload for a science mission onboard the International Space Station.
      After working for a year on satellite design, Ryan returned to NASA Marshall. She noted that the opportunity to work in Marshall’s Engine Systems branch, to be involved with pushing technology forward, and to work on Artemis, really drew her back to NASA. Ryan later earned a master’s degree in aerospace systems from the University of Alabama in Huntsville.
      When not occupied with rocket engine development, Ryan likes to work on quieter hobbies in her free time, including reading, board games, crocheting, and solving all manner of puzzles – crosswords, number games, word games, and more. Her interest for solving puzzles carries over into her work on the Raptor rocket engines for HLS.
      “My favorite tasks are the ones that most resemble a puzzle, Ryan said. “If we’re investigating an issue and have a lot of information to assess, I love putting all the pieces together and figuring out what happened, why, and the path forward. I enjoy digging into the data and solving those puzzles.”
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system

      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
    • By NASA
      NASA and its international partners are launching scientific investigations on SpaceX’s 31st commercial resupply services mission to the International Space Station including studies of solar wind, a radiation-tolerant moss, spacecraft materials, and cold welding in space. The company’s Dragon cargo spacecraft is scheduled to launch from NASA’s Kennedy Space Center in Florida.
      Read more about some of the research making the journey to the orbiting laboratory:
      Measuring solar wind
      The CODEX (COronal Diagnostic EXperiment) examines the solar wind, creating a globally comprehensive data set to help scientists validate theories for what heats the solar wind – which is a million degrees hotter than the Sun’s surface – and sends it streaming out at almost a million miles per hour.
      The investigation uses a coronagraph, an instrument that blocks out direct sunlight to reveal details in the outer atmosphere or corona. The instrument takes multiple daily measurements that determine the temperature and speed of electrons in the solar wind, along with the density information gathered by traditional coronagraphs. A diverse international team has been designing, building, and testing the instrument since 2019 at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Multiple missions have studied the solar wind, and CODEX could add important pieces to this complex puzzle. When the solar wind reaches Earth, it triggers auroras at the poles and can generate space weather storms that sometimes disrupt satellite and land-based communications and power grids on the ground. Understanding the source of the solar wind could help improve space-weather forecasts and response.
      A worker prepares the CODEX (COronal Diagnostic EXperiment) instrument for launch.NASA Antarctic moss in space
      A radiation tolerance experiment, ARTEMOSS, uses a live Antarctic moss, Ceratodon purpureus, to study how some plants better tolerate exposure to radiation and to examine the physical and genetic response of biological systems to the combination of cosmic radiation and microgravity. Little research has been done on how these two factors together affect plant physiology and performance, and results could help identify biological systems suitable for use in bioregenerative life support systems on future missions.
      Mosses grow on every continent on Earth and have the highest radiation tolerance of any plant. Their small size, low maintenance, ability to absorb water from the air, and tolerance of harsh conditions make them suitable for spaceflight. NASA chose the Antarctic moss because that continent receives high levels of radiation from the Sun.
      The investigation also could identify genes involved in plant adaptation to spaceflight, which might be engineered to create strains tolerant of deep-space conditions. Plants and other biological systems able to withstand the extreme conditions of space also could provide food and other necessities in harsh environments on Earth.
      A Petri plate holding Antarctic moss colonies is prepared for launch at Brookhaven National Laboratory. SETI Institute Exposing materials to space
      The Euro Material Ageing investigation from ESA (European Space Agency) includes two experiments studying how certain materials age while exposed to space. The first experiment, developed by CNES (Centre National d’Etudes Spatiales), includes materials selected from 15 European entities through a competitive evaluation process that considered novelty, scientific merit, and value for the material science and technology communities. The second experiment looks at organic samples and their stability or degradation when exposed to ultraviolet radiation not filtered by Earth’s atmosphere. The exposed samples are recovered and returned to Earth.
      Predicting the behavior and lifespan of materials used in space can be difficult because facilities on the ground cannot simultaneously test for all aspects of the space environment. These limitations also apply to testing organic compounds and minerals that are relevant for studying comets, asteroids, the surface of Mars, and the atmospheres of planets and moons. Results could support better design for spacecraft and satellites, including improved thermal control, and the development of sensors for research and industrial applications.
      Preparation of one of the Euro Material Ageing’s experiments for launch.Centre National d’Etudes Spatiales Repairing spacecraft from the inside
      Nanolab Astrobeat investigates using cold welding to repair perforations in the outer shell or hull of a spacecraft from the inside. Less force is needed to fuse metallic materials in space than on Earth, and cold welding could be an effective way to repair spacecraft.
      Some micrometeoroids and space debris traveling at high velocities could perforate the outer surfaces of spacecraft, possibly jeopardizing mission success or crew safety. The ability to repair impact damage from inside a spacecraft may be more efficient and safer for crew members. Results also could improve applications of cold welding on Earth as well.
      The investigation also involves a collaboration with cellist Tina Guo with support from New York University Abu Dhabi to store musical compositions on the Astrobeat computer. Investigators planned to stream this “Music from Space” from the space station to the International Astronautical Congress in Milan and to Abu Dhabi after the launch.
      The Nanolab Astrobeat computer during assembly prior to launch.Malta College of Arts, Science & Technology/ Leonardo Barilaro Download high-resolution photos and videos of the research mentioned in this article. 
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Station Benefits for Humanity
      Latest News from Space Station Research
      International Space Station
      View the full article
    • By NASA
      Mars Sample Return MSR Home Mission Concept Overview Perseverance Rover Sample Retrieval Lander Mars Ascent Vehicle Sample Recovery Helicopters Earth Return Orbiter Science Overview Bringing Mars Samples to Earth Mars Rock Samples MSR Science Community Member Sign up News and Features Multimedia Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
      New Team to Assess NASA’s Mars Sample Return Architecture Proposals
      NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the agency’s Mars Sample Return Program, which aims to bring back scientifically selected samples from Mars, and is a key step in NASA’s quest to better understand our solar system and help answer whether we are alone in the universe.
      Earlier this year, the agency commissioned design studies from the NASA community and eight selected industry teams on how to return Martian samples to Earth in the 2030s while lowering the cost, risk, and mission complexity. The new strategy review team will assess 11 studies conducted by industry, a team across NASA centers, the agency’s Jet Propulsion Laboratory in Southern California, and the Johns Hopkins Applied Physics Laboratory. The team will recommend to NASA a primary architecture for the campaign, including associated cost and schedule estimates.
      “Mars Sample Return will require a diversity of opinions and ideas to do something we’ve never done before: launch a rocket off another planet and safely return samples to Earth from more than 33 million miles away,” said NASA Administrator Bill Nelson. “It is critical that Mars Sample Return is done in a cost-effective and efficient way, and we look forward to learning the recommendations from the strategy review team to achieve our goals for the benefit of humanity.”
      Returning samples from Mars has been a major long-term goal of international planetary exploration for more than three decades, and the Mars Sample Return Program is jointly planned with ESA (European Space Agency). NASA’s Perseverance rover is collecting compelling science samples that will help scientists understand the geological history of Mars, the evolution of its climate, and potential hazards for future human explorers. Retrieval of the samples also will help NASA’s search for signs of ancient life.
      The team’s report is anticipated by the end of 2024 and will examine options for a complete mission design, which may be a composite of multiple studied design elements. The team will not recommend specific acquisition strategies or partners. The strategy review team has been chartered under a task to the Cornell Technical Services contract. The team may request input from a NASA analysis team that consists of government employees and expert consultants. The analysis team also will provide programmatic input such as a cost and schedule assessment of the architecture recommended by the strategy review team.
      The Mars Sample Return Strategy Review Team is led by Jim Bridenstine, former NASA administrator, and includes the following members:
      Greg Robinson, former program director, James Webb Space Telescope Lisa Pratt, former planetary protection officer, NASA Steve Battel, president, Battel Engineering; Professor of Practice, University of Michigan, Ann Arbor Phil Christensen, regents professor, School of Earth and Space Exploration, Arizona State University, Tempe Eric Evans, director emeritus and fellow, MIT Lincoln Lab Jack Mustard, professor of Earth, Environmental, and Planetary Science, Brown University Maria Zuber, E. A. Griswold professor of Geophysics and presidential advisor for science and technology policy, MIT The NASA Analysis Team is led by David Mitchell, chief program management officer at NASA Headquarters, and includes the following members:
      John Aitchison, program business manager (acting), Mars Sample Return Brian Corb, program control/schedule analyst, NASA Headquarters Steve Creech, assistant deputy associate administrator for Technical, Moon to Mars Program Office, NASA Headquarters Mark Jacobs, senior systems engineer, NASA Headquarters Rob Manning, chief engineer emeritus, NASA JPL Mike Menzel, senior engineer, NASA Goddard Fernando Pellerano, senior advisor for Systems Engineering, NASA Goddard Ruth Siboni, chief of staff, Moon to Mars Program Office, NASA Headquarters Bryan Smith, director of Facilities, Test and Manufacturing, NASA Glenn Ellen Stofan, under secretary for Science and Research, Smithsonian For more information on NASA’s Mars Sample Return, visit:
      https://science.nasa.gov/mission/mars-sample-return

      Dewayne Washington
      Headquarters, Washington
      202-358-1100
      dewayne.a.washington@nasa.gov 
      Share








      Details
      Last Updated Oct 16, 2024 Related Terms
      Mars Mars Sample Return (MSR) Missions Explore More
      3 min read NASA’s Hubble Sees a Stellar Volcano


      Article


      7 hours ago
      6 min read NASA, NOAA: Sun Reaches Maximum Phase in 11-Year Solar Cycle


      Article


      1 day ago
      2 min read ESA/NASA’s SOHO Spies Bright Comet Making Debut in Evening Sky
      The Solar and Heliospheric Observatory (SOHO) has captured images of the second-brightest comet to ever pass…


      Article


      5 days ago
      Keep Exploring Discover Related Topics
      Mars Sample Return


      Mars Sample Return would be NASA’s most ambitious, multi-mission campaign that would bring carefully selected Martian samples to Earth for…


      Mars 2020: Perseverance Rover


      NASA’s Mars Perseverance rover seeks signs of ancient life and collects samples of rock and regolith for possible Earth return.


      Mars Science Laboratory: Curiosity Rover


      Part of NASA’s Mars Science Laboratory mission, at the time of launch, Curiosity was the largest and most capable rover…


      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…

      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artemis II crew members (left to right) Reid Wiseman, Christina Koch, and Jeremy Hansen share information about themselves and their mission during a town hall at NASA’s Glenn Research Center in Cleveland. Credit: NASA/Sara Lowthian-Hanna  Three of the four astronauts who will venture around the Moon on Artemis II, the first crewed flight paving the way for future lunar surface missions, visited NASA’s Glenn Research Center in Cleveland, Sept. 10-11. NASA Glenn is an integral part of the development of the Orion spacecraft and a leader in propulsion, power, and communications research. 
      Commander Reid Wiseman  and Mission Specialists  Christina Koch and Jeremy Hansen (Canadian Space Agency) discussed their upcoming mission and hosted a question-and-answer session during town hall events at Lewis Field in Cleveland and NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. Victor Glover, who was unable to attend, is the pilot and fourth crew member. Both events included tours and recognition of employees who have contributed to the success of Artemis missions.  
      Artemis II crew members Reid Wiseman, Christina Koch, and Jeremy Hansen (left to right, wearing blue flight suits) and other NASA personnel look down into the stainless-steel vacuum chamber in the In-Space Propulsion Facility at NASA’s Neil Armstrong Test Facility in Sandusky, Ohio. This is the world’s only facility capable of testing full-scale upper stage launch vehicles and rocket engines under simulated high-altitude conditions.Credit: NASA/Sara Lowthian-Hanna  The Artemis II crew will lift off on an approximately 10-day mission from Launch Complex 39B at NASA’s Kennedy Space Center in Florida, blazing beyond Earth’s grasp atop the agency’s mega Moon rocket. The crew will check out Orion’s systems and perform a targeting demonstration test relatively close to Earth before venturing around the Moon.  
      Back to Newsletter Explore More
      1 min read Dr. Rickey Shyne Named Crain’s Notable Black Leader 
      Article 14 mins ago 2 min read Ohio State Marching Band Performs Tribute to NASA 
      Article 14 mins ago 1 min read NASA Glenn Connects with Morehead State University  
      Article 15 mins ago View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A natural color view from Cassini of Saturn with its Titan moon in the foreground in August 2012. Titan’s diameter is 50% larger than Earth’s moon.Credit: NASA NASA’s ambitious Cassini mission to Saturn in the late 1990s was one of the agency’s greatest accomplishments, providing unprecedented revelations about the esoteric outer planet and its moons. The complex undertaking was also a tremendous, yet bittersweet, achievement for the Lewis Research Center (today, NASA’s Glenn Research Center in Cleveland), which oversaw the rockets that propelled Cassini to Saturn. Cassini brought a close to over 35 years of Lewis’ management of NASA’s launch vehicles.
      Cassini Mission: 5 Things to Know About NASA Lewis’ Last Launch
      1. NASA Lewis Launched the Largest and Most Complex Deep-Space Mission to Date
      In the early 1980s, NASA began planning the first-ever in-depth study of the planet Saturn. The mission would use the Cassini orbiter designed by NASA’s Jet Propulsion Laboratory in Southern California and the European Space Agency’s Huygens lander. It was one of the heaviest and most complex interplanetary spacecraft ever assembled. Cassini’s plutonium power system and intricate flight path further complicated the mission.
      NASA Lewis was responsible for managing the launches of government missions involving the Centaur upper stage and the Atlas and Titan boosters. Cassini’s 6-ton payload forced Lewis to use the U.S. Air Force’s three-stage Titan IV, the most powerful vehicle available, and pair it with the most advanced version of the Centaur, referred to as G-prime.
      The Titan IV shroud in the Space Power Facility in October 1990. It was only the second test since the world-class facility had been brought back online after over a decade in standby conditions.Credit: NASA/Quentin Schwinn 2. Lewis Performed Hardware Testing for the Cassini Launch
      One of NASA Lewis’ primary launch responsibilities was integrating the payload and upper stages with the booster. This involved balancing weight requirements, providing adequate insulation for Centaur’s cryogenic propellants, determining correct firing times for the stages, and ensuring that that the large shroud, which encapsulated both the upper stage and payload, jettisoned cleanly after launch.
      By the time of Cassini, the center had been testing shrouds (including the Titan III fairing) in simulated space conditions for over 25 years. NASA’s Space Power Facility possesses the world’s largest vacuum chamber and was large enough to accommodate the Titan IV’s 86-foot-tall, 16-foot-diameter fairing. In the fall of 1990, the shroud was installed in the chamber, loaded with weights that simulated the payload, and subjected to atmospheric pressures found at an altitude of 72 miles.
      The system was successfully separated in less than half a second. Using simulated Cassini and Centaur vehicles, NASA engineers also redesigned a thicker thermal blanket that would protect Cassini’s power system from acoustic vibrations during liftoff.


      Members of NASA Lewis’ Launch Vehicle Directorate pose with a Centaur model in May 1979 to mark the 50th successful launch of the Atlas/Centaur.Credit: NASA/Martin Brown 3. Lewis Personnel Assisted with the Launch
      In late August 1997, a group of NASA Lewis engineers traveled to NASA’s Kennedy Space Center in Florida to make final preparations for the Cassini launch, working with Air Force range safety personnel at Patrick Air Force Base to ensure a safe launch under all circumstances.
      After an aborted launch two days earlier, the vehicle was readied for another attempt in the evening of October 14. Lewis personnel took stations in the Launch Vehicle Data Center inside Hangar AE to monitor the launch vehicle’s temperature, pressure, speed, trajectory, and vibration during the launch. The weather was mild, and the countdown proceeded into the morning hours of October 15 without any major issues.
      At 4:43 a.m. EDT, Titan’s first stage and the two massive solid rocket motors roared to life, and the vehicle rose into the dark skies over Florida. The Lewis launch team monitored the flight as the vehicle exited Earth’s atmosphere, Titan burned through its stages, and Centaur sent Cassini out of Earth orbit and on its 2-billion-mile journey to Saturn. After a successful spacecraft separation, Lewis’ responsibilities were complete. The launch had gone exceedingly well. 

      This illustration depicts the Cassini orbiter with the Huygens lander descending to the Titan moon (left) and Saturn in the background.Credit: NASA 4. Cassini-Huygens Brought a Close to Decades of Lewis Launch Operations
      Cassini-Huygens was NASA Lewis’ 119th and final launch, and it brought to a close the center’s decades of launch operations. The center had been responsible for NASA’s upper-stage vehicles since the fall of 1962. The primary stages were the Agena, which had 28 successful launches, and Centaur, which has an even more impressive track record and remains in service today.
      While Lewis continued to handle vehicle integration and other technical issues for launches of NASA payloads, in the 1980s, NASA began transferring launch responsibilities to commercial entities. In the mid-1990s, NASA underwent a major realignment that consolidated all launch vehicle responsibilities at NASA Kennedy.
      So it was with mixed emotions that around 20 Lewis employees and retirees gathered at the Cleveland center in the early morning hours of Oct. 15, 1997, to watch the Cassini launch. The group held its cheers for 40 minutes after liftoff until Lewis’ responsibilities concluded for the last time with the safe separation of Cassini from Centaur. “In many ways, this is the end of an era, across the agency and, in particular, here at Lewis,” noted one engineer from the Launch Vehicle and Transportation Office.

      The Titan IV/Centaur lifts off from Launch Complex 40 at Cape Canaveral on Oct. 15, 1997. NASA Lewis engineers were monitoring the launch from Hangar AE, roughly 3.5 miles to the south. Credit: NASA 5. Cassini Made Groundbreaking Discoveries That Inform Today’s NASA Missions
      Cassini’s seven-year voyage to Saturn included flybys of Venus (twice), Earth, and Jupiter so that the planets’ gravitational forces could accelerate the spacecraft. Cassini entered Saturn’s orbit in June 2004 and began relaying data and nearly half a million images back to Earth. Huygens separated from the spacecraft and descended to the surface of the Saturn’s largest moon, Titan, in January 2005. It was the first time a vehicle ever landed on a celestial body in the outer solar system.
      Cassini went on to make plunges into the planet’s upper atmosphere and through Saturn’s rings.  Scientific information on the mysterious planet, its moons, and rings led to the publication of nearly 4,000 technical papers. After over 13 years and nearly 300 orbits, on Sept. 15, 2017, NASA intentionally sent Cassini plummeting into the atmosphere where it burned up, ending its remarkable mission.
      NASA engineers used their experiences from the Cassini mission to help design the Europa Clipper, which is intended to perform flybys of Jupiter’s moon Europa. Europa Clipper launched on Oct. 14.

      Keep Exploring
      Read the “Sending Cassini to Saturn” Series from NASA Glenn Visit NASA’s Cassini-Huygens Website Visit the European Space Agency’s Cassini-Huygens Website Watch NASA Coverage of the Cassini Launch See NASA Glenn’s Historic Centaur Rocket Display
      Explore More
      24 min read NASA Celebrates Hispanic Heritage Month 2024
      Article 4 days ago 3 min read Pioneering NASA Astronaut Health Tech Thwarts Heart Failure
      Article 4 days ago 8 min read Kathryn Sullivan: The First American Woman to Walk in Space
      Article 5 days ago View the full article
  • Check out these Videos

×
×
  • Create New...