Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Curiosity Mars rover sees its tracks receding into the distance at a site nicknamed “Ubajara” on April 30, 2023. This site is where Curiosity made the discovery of siderite, a mineral that may help explain the fate of the planet’s thicker ancient atmosphere.Credit: NASA/JPL-Caltech/MSSS New findings from NASA’s Curiosity Mars rover could provide an answer to the mystery of what happened to the planet’s ancient atmosphere and how Mars has evolved over time.
      Researchers have long believed that Mars once had a thick, carbon dioxide-rich atmosphere and liquid water on the planet’s surface. That carbon dioxide and water should have reacted with Martian rocks to create carbonate minerals. Until now, though, rover missions and near-infrared spectroscopy analysis from Mars-orbiting satellites haven’t found the amounts of carbonate on the planet’s surface predicted by this theory.
      Reported in an April paper in Science, data from three of Curiosity’s drill sites revealed the presence of siderite, an iron carbonate mineral, within the sulfate-rich rocky layers of Mount Sharp in Mars’ Gale Crater.
      “The discovery of abundant siderite in Gale Crater represents both a surprising and important breakthrough in our understanding of the geologic and atmospheric evolution of Mars,” said Benjamin Tutolo, associate professor at the University of Calgary, Canada, and lead author of the paper.
      To study the Red Planet’s chemical and mineral makeup, Curiosity drills three to four centimeters down into the subsurface, then drops the powdered rock samples into its CheMin instrument. The instrument, led by NASA’s Ames Research Center in California’s Silicon Valley, uses X-ray diffraction to analyze rocks and soil. CheMin’s data was processed and analyzed by scientists at the Astromaterials Research and Exploration Science (ARES) Division at NASA’s Johnson Space Center in Houston.
      “Drilling through the layered Martian surface is like going through a history book,” said Thomas Bristow, research scientist at NASA Ames and coauthor of the paper. “Just a few centimeters down gives us a good idea of the minerals that formed at or close to the surface around 3.5 billion years ago.”
      The discovery of this carbonate mineral in rocks beneath the surface suggests that carbonate may be masked by other minerals in near-infrared satellite analysis. If other sulfate-rich layers across Mars also contain carbonates, the amount of stored carbon dioxide would be a fraction of that needed in the ancient atmosphere to create conditions warm enough to support liquid water. The rest could be hidden in other deposits or have been lost to space over time.
      In the future, missions or analyses of other sulfate-rich areas on Mars could confirm these findings and help us better understand the planet’s early history and how it transformed as its atmosphere was lost.
      Curiosity, part of NASA’s Mars Exploration Program (MEP) portfolio, was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
      For more information on Curiosity, visit: 
      https://science.nasa.gov/mission/msl-curiosity
      News Media Contacts 
      Karen Fox / Molly Wasser 
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 

      Andrew Good 
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Share
      Details
      Last Updated Apr 17, 2025 Related Terms
      Ames Research Center Astromaterials Curiosity (Rover) General Jet Propulsion Laboratory Mars Science Laboratory (MSL) Explore More
      7 min read NASA’s SpaceX 32nd Commercial Resupply Mission Overview
      NASA and SpaceX are targeting no earlier than 4:15 a.m. EDT on Monday, April 21,…
      Article 21 hours ago 6 min read NASA’s Chandra Releases New 3D Models of Cosmic Objects
      Article 24 hours ago 3 min read NASA Sees Progress on Blue Origin’s Orbital Reef Design Development
      Article 1 day ago Keep Exploring Discover Related Topics
      Curiosity Rover (MSL)
      Ames Research Center
      Mars
      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
      Curiosity Science Instruments
      Curiosity’s scientific instruments are the tools that bring us stunning images of Mars and ground-breaking discoveries.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Piloted by NASA’s Tim Williams, the ER-2 science aircraft ascends for one of the final science flights for the GSFC Lidar Observation and Validation Experiment (GLOVE) on Feb. 1, 2025. As a collaboration between engineers, scientists, and aircraft professionals, GLOVE aims to improve satellite data products for Earth Science applications. NASA/Steve Freeman In February, NASA’s ER-2 science aircraft flew instruments designed to improve satellite data products and Earth science observations. From data collection to processing, satellite systems continue to advance, and NASA is exploring how instruments analyzing clouds can improve data measurement methods.
      Researchers participating in the Goddard Space Flight Center Lidar Observation and Validation Experiment (GLOVE) used the ER-2 – based at NASA’s Armstrong Flight Research Center in Edwards, California – to validate satellite data about cloud and airborne particles in the Earth’s atmosphere. Scientists are using GLOVE instruments installed onboard the aircraft to measure and validate data about clouds generated by satellite sensors already orbiting in space around Earth.
      “The GLOVE data will allow us to test new artificial intelligence algorithms in data processing,” said John Yorks, principal investigator for GLOVE and research physical scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “These algorithms aim to improve the cloud and aerosol detection in data produced by the satellites.”
      Jennifer Moore, a researcher from NASA’s Goddard Space Flight Center, checks the cabling on the Roscoe instrument at NASA’s Armstrong Flight Research Center in Edwards, California, for the GSFC Lidar Observation and Validation Experiment (GLOVE) on Feb. 1, 2025. The Roscoe instrument will be uploaded onto NASA’s ER-2 science aircraft.NASA/Steve Freeman The validation provided by GLOVE is crucial because it ensures the accuracy and reliability of satellite data. “The instruments on the plane provide a higher resolution measurement ‘truth’ to ensure the data is a true representation of the atmospheric scene being sampled,” Yorks said.
      The ER-2 flew over various parts of Oregon, Arizona, Utah, and Nevada, as well as over the Pacific Ocean off the coast of California. These regions reflected various types of atmospheres, including cirrus clouds, marine stratocumulus, rain and snow, and areas with multiple types of clouds.
      “The goal is to improve satellite data products for Earth science applications,” Yorks said. “These measurements allow scientists and decision-makers to confidently use this satellite information for applications like weather forecasting and hazard monitoring.”
      Researcher Jackson Begolka from the University of Iowa examines instrument connectors onboard the ER-2 aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, on Feb. 1, 2025. The GLOVE instrument will validate data from satellites orbiting the Earth.NASA/Steve Freeman The four instruments installed on the ER-2 were the Cloud Physics Lidar, the Roscoe Lidar, the enhanced Moderate Resolution Imaging Spectroradiometer Airborne Simulator, and the Cloud Radar System. These instruments validate data produced by sensors on NASA’s Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) and the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE), a joint venture between the ESA (European Space Agency) and JAXA (Japan Aerospace Exploration Agency).
      “Additionally, the EarthCARE satellite is flying the first ever Doppler radar for measurements of air motions within clouds,” Yorks said. While the ER-2 is operated by pilots and aircrew from NASA Armstrong, these instruments are supported by scientists from NASA Goddard, NASA’s Ames Research Center in California’s Silicon Valley, and the Naval Research Laboratory office in Monterey, California, as well as by students from the University of Iowa in Iowa City and the University of Maryland College Park.
      Share
      Details
      Last Updated Apr 16, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Airborne Science Earth Science Earth Science Technology Office Earth's Atmosphere ER-2 Goddard Space Flight Center Explore More
      4 min read Hubble Provides New View of Galactic Favorite
      As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new…
      Article 9 hours ago 4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements
      Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are…
      Article 1 day ago 5 min read Can Solar Wind Make Water on Moon? NASA Experiment Shows Maybe 
      Scientists have hypothesized since the 1960s that the Sun is a source of ingredients that…
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:02:14 On 12 March 2025, ESA’s Hera spacecraft soared just 5000 km above Mars and passed within 300 km of its distant moon, Deimos. Captured by Hera’s 1020x1020 pixel Asteroid Framing Camera, this video sequence offers a rare view of the red planet and its enigmatic moon. The original greyscale images have been colour-enhanced based on known surface features.
      View the full article
    • By NASA
      A SpaceX Falcon 9 rocket, with the company’s Dragon spacecraft atop, stands at Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Nov. 4, 2024, in preparation for the agency’s SpaceX 31st Commercial Resupply Services mission to the International Space Station.Credit: SpaceX NASA and SpaceX are targeting 4:15 a.m. EDT, Monday, April 21, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. This is the 32nd SpaceX commercial resupply services mission to the orbiting laboratory for the agency.
      Filled with more than 6,400 pounds of supplies, a SpaceX Dragon spacecraft on a Falcon 9 rocket will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      Live launch coverage will begin at 3:55 a.m. on NASA+. Learn how to watch NASA content through a variety of platforms.
      NASA’s coverage of Dragon’s arrival to the orbital outpost will begin at 6:45 a.m. Tuesday, April 22, on NASA+. The spacecraft will dock autonomously to the zenith port of the space station’s Harmony module.

      Along with food and essential equipment for the crew, Dragon is delivering a variety of science experiments, including a demonstration of refined maneuvers for free-floating robots. Dragon also carries an enhanced air quality monitoring system that could protect crew members on exploration missions to the Moon and Mars, and two atomic clocks to examine fundamental physics concepts such as relativity and test worldwide synchronization of precision timepieces.

      The Dragon spacecraft is scheduled to remain at the space station until May, when it will depart and return to Earth with research and cargo, splashing down off the coast of California.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, April 16
      1 p.m. – International Space Station National Lab Science Webinar with the following participants:
      Jennifer Buchli, chief scientist, NASA’s International Space Station Program Michael Roberts, chief scientific officer, International Space Station National Lab Claire Fortenberry, research aerospace engineer, NASA’s Glenn Research Center in Cleveland Yupeng Chen, co-founder, Eascra Biotech Mari Anne Snow, CEO, Eascra Biotech Maj. Travis Tubbs, U.S. Air Force Academy Heath Mills, co-founder, Rhodium Scientific Sarah Wyatt, researcher, Ohio University Media who wish to participate must register for Zoom access no later than one hour before the start of the webinar.
      Audio of the teleconference will stream live on the International Space Station National Lab website.
      Friday, April 18
      3 p.m. – Prelaunch media teleconference (no earlier than one hour after completion of the Launch Readiness Review) with the following participants:
      Zebulon Scoville, deputy manager, Transportation Integration Office, NASA’s International Space Station Program Jennifer Buchli, chief scientist, NASA’s International Space Station Program Sarah Walker, director, Dragon Mission Management, SpaceX Jimmy Taeger, launch weather officer, 45th Weather Squadron, Cape Canaveral Space Force Station
      Media who wish to participate by phone must request dial-in information by 5 p.m. Thursday, April 17, by emailing Kennedy’s newsroom at: ksc-media-accreditat@mail.nasa.gov.
      Audio of the teleconference will stream live on the agency’s website.


      Monday, April 21:
      3:55 a.m. – Launch coverage begins on NASA+.

      4:15 a.m. – Launch
      Tuesday, April 22:
      6:45 a.m. – Arrival coverage begins on NASA+.
      8:20 a.m. – Docking
      NASA website launch coverage
      Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning no earlier than 3:55 a.m., April 21, as the countdown milestones occur. On-demand streaming video on NASA+ and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468. Follow countdown coverage on our International Space Station blog for updates.
      Attend Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
      Watch, Engage on Social Media
      Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts:

      X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_Research, 
      @ISS National Lab
      Facebook: NASA, NASAKennedy, ISS, ISS National Lab
      Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab
      Coverage en Espanol
      Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      Learn more about the commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-spacex-crs-32/
      -end-
      Julian Coltre / Josh Finch
      Headquarters, Washington
      202-358-1100
      julian.n.coltre@nasa.gov / joshua.a.finch@nasa.gov
      Stephanie Plucinsky / Steven Siceloff
      Kennedy Space Center, Florida
      321-876-2468
      stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 14, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Resupply Humans in Space International Space Station (ISS) ISS Research SpaceX Commercial Resupply View the full article
    • By NASA
      This long-duration photograph highlights the Roscosmos segment of the International Space Station with the Soyuz MS-26 spacecraft docked to the Rassvet module. Star trails and Earth’s atmospheric glow also are pictured from the orbital outpost as it soared 258 miles above the Pacific Ocean.Credit: NASA NASA astronaut Don Pettit, along with Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, will depart the International Space Station aboard the Soyuz MS-26 spacecraft and return to Earth on Saturday, April 19.
      Pettit, Ovchinin, and Vagner will undock from the orbiting laboratory’s Rassvet module at 5:57 p.m. EDT, heading for a parachute-assisted landing at 9:20 p.m. (6:20 a.m. Kazakhstan time, Sunday, April 20) on the steppe of Kazakhstan, southeast of the town of Dzhezkazgan. Landing will occur on Pettit’s 70th birthday.
      NASA’s live coverage of return and related activities will stream on NASA+. Learn how to stream NASA content through a variety of platforms.
      A change of command ceremony also will stream on NASA platforms at 2:40 p.m. Friday, April 18. Ovchinin will handover station command to JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi for Expedition 73, which begins at the time of undocking.
      Spanning 220 days in space, Pettit and his crewmates will have orbited the Earth 3,520 times and completed a journey of 93.3 million miles over the course of their mission. The Soyuz MS-26 spacecraft launched and docked to the station on Sept. 11, 2024.
      This was Pettit’s fourth spaceflight, where he served as flight engineer for Expedition 71 and 72. He has a career total of 590 days in orbit. Ovchinin completed his fourth flight in space, totaling 595 days, and Vagner has earned an overall total of 416 days in space during two trips to the orbiting laboratory.
      After returning to Earth, the three crew members will fly on a helicopter from the landing site to the recovery staging city of Karaganda, Kazakhstan. Pettit will board a NASA plane and return to Houston, while Ovchinin and Vagner will depart for a training base in Star City, Russia.
      NASA’s coverage is as follows (all times Eastern and subject to changed based on real-time operations):
      Friday, April 18:
      2:40 p.m. – Expedition 72/73 change of command ceremony begins on NASA+.
      Saturday, April 19:
      2 p.m. – Farewells and hatch closing coverage begins on NASA+.
      2:25 p.m. – Hatch closing
      5:30 p.m. – Undocking coverage begins on NASA+.
      5:57 p.m. – Undocking
      8 p.m. – Coverage begins for deorbit burn, entry, and landing on NASA+. 
      8:26 p.m. – Deorbit burn
      9:20 p.m. – Landing

      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future human missions to Mars.

      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Claire O’Shea / Josh Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 14, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) View the full article
  • Check out these Videos

×
×
  • Create New...