Jump to content

Water-rich Planetary Building Blocks Found Around White Dwarf


HubbleSite

Recommended Posts

low_keystone.png

If you go walking along the beach or take an ocean cruise, it's hard to believe that Earth is essentially a "dry" planet. Barely 0.02 percent of our home planet's mass is surface water. In fact, our oceans came along a few hundred million years after Earth formed 4.6 billion years ago. Though still debated, astronomers think that the primeval Earth was most likely irrigated when water-rich asteroids in the solar system crashed into our planet.

Now astronomers have found that the same water "delivery system" could have occurred in a dying star's planetary system. Hubble Space Telescope spectroscopic observations have found forensic evidence for the same kind of water-rich asteroids that may have once brought water to Earth. Observations made with Hubble's Cosmic Origins Spectrograph (COS) allowed the team of astronomers to do a robust chemical analysis of debris falling into the white dwarf star GD 61, located 150 light-years from Earth. They didn't detect planets but the building blocks of planets. The asteroids are plummeting deep into the gravitational field of the white dwarf, presumably due to gravitational perturbations from a surviving Jupiter-sized planet in the system. This is circumstantial evidence that potentially habitable planets once existed in this star system. However, the star burned out 200 million years ago.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Hubble Space Telescope Home NASA’s Hubble, Webb… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   6 Min Read NASA’s Hubble, Webb Probe Surprisingly Smooth Disk Around Vega
      Teams of astronomers used the combined power of NASA’s Hubble and James Webb space telescopes to revisit the legendary Vega disk. Credits:
      NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona) In the 1997 movie “Contact,” adapted from Carl Sagan’s 1985 novel, the lead character scientist Ellie Arroway (played by actor Jodi Foster) takes a space-alien-built wormhole ride to the star Vega. She emerges inside a snowstorm of debris encircling the star — but no obvious planets are visible.
      It looks like the filmmakers got it right.
      A team of astronomers at the University of Arizona, Tucson used NASA’s Hubble and James Webb space telescopes for an unprecedented in-depth look at the nearly 100-billion-mile-diameter debris disk encircling Vega. “Between the Hubble and Webb telescopes, you get this very clear view of Vega. It’s a mysterious system because it’s unlike other circumstellar disks we’ve looked at,” said Andras Gáspár of the University of Arizona, a member of the research team. “The Vega disk is smooth, ridiculously smooth.”
      The big surprise to the research team is that there is no obvious evidence for one or more large planets plowing through the face-on disk like snow tractors. “It’s making us rethink the range and variety among exoplanet systems,” said Kate Su of the University of Arizona, lead author of the paper presenting the Webb findings.
      [left] A Hubble Space Telescope false-color view of a 100-billion-mile-wide disk of dust around the summer star Vega. Hubble detects reflected light from dust that is the size of smoke particles largely in a halo on the periphery of the disk. The disk is very smooth, with no evidence of embedded large planets. The black spot at the center blocks out the bright glow of the hot young star.
      [right] The James Webb Space Telescope resolves the glow of warm dust in a disk halo, at 23 billion miles out. The outer disk (analogous to the solar system’s Kuiper Belt) extends from 7 billion miles to 15 billion miles. The inner disk extends from the inner edge of the outer disk down to close proximity to the star. There is a notable dip in surface brightness of the inner disk from approximately 3.7 to 7.2 billion miles. The black spot at the center is due to lack of data from saturation. NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona)
      Download this image

      Webb sees the infrared glow from a disk of particles the size of sand swirling around the sizzling blue-white star that is 40 times brighter than our Sun. Hubble captures an outer halo of this disk, with particles no bigger than the consistency of smoke that are reflecting starlight.
      The distribution of dust in the Vega debris disk is layered because the pressure of starlight pushes out the smaller grains faster than larger grains. “Different types of physics will locate different-sized particles at different locations,” said Schuyler Wolff of the University of Arizona team, lead author of the paper presenting the Hubble findings. “The fact that we’re seeing dust particle sizes sorted out can help us understand the underlying dynamics in circumstellar disks.”
      The Vega disk does have a subtle gap, around 60 AU (astronomical units) from the star (twice the distance of Neptune from the Sun), but otherwise is very smooth all the way in until it is lost in the glare of the star. This shows that there are no planets down at least to Neptune-mass circulating in large orbits, as in our solar system, say the researchers.
      Hubble acquired this image of the circumstellar disk around the star Vega using the Space Telescope Imaging Spectrograph (STIS). NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona)
      Download this image

      “We’re seeing in detail how much variety there is among circumstellar disks, and how that variety is tied into the underlying planetary systems. We’re finding a lot out about the planetary systems — even when we can’t see what might be hidden planets,” added Su. “There’s still a lot of unknowns in the planet-formation process, and I think these new observations of Vega are going to help constrain models of planet formation.”
      Disk Diversity
      Newly forming stars accrete material from a disk of dust and gas that is the flattened remnant of the cloud from which they are forming. In the mid-1990s Hubble found disks around many newly forming stars. The disks are likely sites of planet formation, migration, and sometimes destruction. Fully matured stars like Vega have dusty disks enriched by ongoing “bumper car” collisions among orbiting asteroids and debris from evaporating comets. These are primordial bodies that can survive up to the present 450-million-year age of Vega (our Sun is approximately ten times older than Vega). Dust within our solar system (seen as the Zodiacal light) is also replenished by minor bodies ejecting dust at a rate of about 10 tons per second. This dust is shoved around by planets. This provides a strategy for detecting planets around other stars without seeing them directly – just by witnessing the effects they have on the dust.
      “Vega continues to be unusual,” said Wolff. “The architecture of the Vega system is markedly different from our own solar system where giant planets like Jupiter and Saturn are keeping the dust from spreading the way it does with Vega.”
      Webb acquired this image of the circumstellar disk around the star Vega using the Mid-Infrared Instrument (MIRI). NASA, ESA, CSA, STScI, S. Wolff (University of Arizona), K. Su (University of Arizona), A. Gáspár (University of Arizona)
      Download this image

      For comparison, there is a nearby star, Fomalhaut, which is about the same distance, age and temperature as Vega. But Fomalhaut’s circumstellar architecture is greatly different from Vega’s. Fomalhaut has three nested debris belts.
      Planets are suggested as shepherding bodies around Fomalhaut that gravitationally constrict the dust into rings, though no planets have been positively identified yet. “Given the physical similarity between the stars of Vega and Fomalhaut, why does Fomalhaut seem to have been able to form planets and Vega didn’t?” said team member George Rieke of the University of Arizona, a member of the research team. “What’s the difference? Did the circumstellar environment, or the star itself, create that difference? What’s puzzling is that the same physics is at work in both,” added Wolff.
      First Clue to Possible Planetary Construction Yards
      Located in the summer constellation Lyra, Vega is one of the brightest stars in the northern sky. Vega is legendary because it offered the first evidence for material orbiting a star — presumably the stuff for making planets — as potential abodes of life. This was first hypothesized by Immanuel Kant in 1775. But it took over 200 years before the first observational evidence was collected in 1984. A puzzling excess of infrared light from warm dust was detected by NASA’s IRAS (Infrared Astronomy Satellite). It was interpreted as a shell or disk of dust extending twice the orbital radius of Pluto from the star.
      In 2005, NASA’s infrared Spitzer Space Telescope mapped out a ring of dust around Vega. This was further confirmed by observations using submillimeter telescopes including Caltech’s Submillimeter Observatory on Mauna Kea, Hawaii, and also the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and ESA’s (European Space Agency’s) Herschel Space Telescope, but none of these telescopes could see much detail. “The Hubble and Webb observations together provide so much more detail that they are telling us something completely new about the Vega system that nobody knew before,” said Rieke.
      Two papers (Wolff et al. and Su et. al.) from the Arizona team will be published in The Astrophysical Journal.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Explore More:

      Finding Planetary Construction Zones


      The science paper by Schuyler Wolff et al., PDF (3.24 MB)


      The science paper by Kate Su et al., PDF (2.10 MB)

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Facebook logo @NASAWebb @NASAWebb Instagram logo @NASAWebb Media Contacts:
      Claire Andreoli (claire.andreoli@nasa.gov), Laura Betz (laura.e.betz@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Ray Villard, Christine Pulliam
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Nov 01, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Goddard Space Flight Center Hubble Space Telescope James Webb Space Telescope (JWST) Stars Keep Exploring Discover More Topics From Hubble and Webb
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      James Webb Space Telescope


      Space Telescope


      Hubble vs. Webb



      Hubble Focus: Strange New Worlds


      NASA’s Hubble Space Telescope team has released a new edition in the Hubble Focus e-book series, called “Hubble Focus: Strange…

      View the full article
    • By European Space Agency
      An international team of astronomers has used the NASA/ESA/CSA James Webb Space Telescope to detect the first brown dwarf candidates outside the Milky Way in the star cluster NGC 602.
      View the full article
    • By NASA
      NASA/Wanmei Liang, USGS On June 10, 2023, the Operational Land Imager on Landsat 8 acquired this image of Mount Taranaki, a snow-capped mountain in New Zealand that is ringed by a dark green forest. Two older and extinct volcanoes, Kaitake and Pouakai, lie to the northwest of its peak.
      Learn more about Mount Taranaki.
      Image Credit: NASA/Wanmei Liang, USGS
      View the full article
    • By NASA
      Learn Home Culturally Inclusive Planetary… Biological & Physical… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      Culturally Inclusive Planetary Engagement in Colorado
      In August 2024, the NASA Science Activation program’s Planetary Resources and Content Heroes (ReaCH) project held a Culturally Inclusive Planetary Engagement workshop at the Laboratory for Atmospheric and Space Physics in Boulder, Colorado for the planetary science community. These workshops are designed to enhance the ability of scientists to engage Black and Latinx youth and their families in planetary science. Workshops include discussions with local educators about evidence-based engagement strategies and experiences conducting hands-on planetary science activities, along with an opportunity to practice these approaches during an event with local partners.
      Planetary scientists and engineers from Boulder, as well as scientists from Florida, Maryland, and Alaska participated. ReaCH partnered with the Boys & Girls Clubs of Metro Denver, whose staff participated in the workshop to share their perspectives. Other educators local to the Denver area also participated, along with an educational specialist from NASA@ My Library (another Science Activation program). The workshop culminated in an event at the Shopneck Boys & Girls Club in Brighton, CO; workshop participants facilitated a variety of hands-on planetary activities for approximately 120 children. Workshop participants also shared information about college pathways into science professions with teenagers at the Club.
      During feedback with evaluators, workshop participants shared, “I got to have hands-on experience working with an underserved population, which I haven’t done before in a workshop. I think this is the necessary next step for me. I am tired of just learning about things. I want to DO things. This gave me the ability to do it without setting up everything myself.”
      Through careful revisions to these workshops and detailed evaluation, the Planetary ReaCH project is building a replicable model that will be used to support similar workshops for other science fields. Members of the planetary and astrobiology community are invited to apply to attend future ReaCH workshops.
      Planetary ReaCH is supported by NASA under cooperative agreement award number 80NSSC21M0003 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Workshop participants experimented with activities such as this model of impact cratering. Share








      Details
      Last Updated Oct 03, 2024 Editor NASA Science Editorial Team Related Terms
      Biological & Physical Sciences Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Planetary Science Science Activation Explore More
      2 min read New NASA eClips VALUE Bundles for Learners with Varied Needs


      Article


      1 day ago
      3 min read 2024 ASGSR Art Competition! 


      Article


      1 day ago
      7 min read NASA’s Webb Reveals Unusual Jets of Volatile Gas from Icy Centaur 29P


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Ruidoso, New Mexico lay in an unusual hush on June 20, 2024. During any normal summer day, the village in the southern part of the state lives up to the Spanish translation of its name — noisy. 

      But the bustle of this vacation hotspot, which attracts nearly 2 million visitors each year, was stifled by a mandatory evacuation order issued as wildfires raged unchecked across Lincoln County and the Mescalero Apache Reservation.  After four days of fires, news of the disaster began spreading to surrounding communities.

      Wildfires cast an orange haze over the Sierra Blanca mountain range in Ruidoso, New Mexico, on June 20, 2024. Image courtesy of James Herrera At NASA’s White Sands Test Facility (WSTF), Fire Department Deputy Chief James Herrera and his team were on high alert from the moment the blaze began.  
      “There were so many rumors, so many things going on,” Herrera said. “People were saying the town was completely burning down. We were expecting the worst before we even got there.” 
      Herrera’s expectations were realistic.  
      Tinderbox conditions, rough terrain, and winds reaching more than 70 miles per hour fueled the flames raging at the South Fork area west of Ruidoso, devouring nearly 5,000 acres just hours after the fire started. 
      As first responders expended every resource available to them both on the ground and in the air, a second fire — the Salt Fire — broke out on tribal land south of the village. 
      Now the twin infernos closed in on Ruidoso like a set of jaws poised to snap shut.  
      Gov. Michelle Lujan Grisham quickly declared a state of emergency and the early whispers crescendoed into an urgent plea for aid from anyone who would listen. 
      There was no doubt in Herrera’s mind: WSTF, based 150 miles from Ruidoso in Las Cruces, New Mexico, would answer the call.  
      “Never once did [WSTF leadership] say ‘Sorry, we can’t help,’” he said. “They asked, ‘What can we do to help? How can we get there as soon as possible?’”  
      Shift changes made for an earliest possible departure at dawn on June 20. The WSTF Fire Department spent the night preparing their truck, gathering their belongings, and bracing for the uncertain. 
      “We didn’t know where we were going to sleep, there were no hotels, everything was closed,” Herrera said. “More than likely, we were going to end up sleeping in our engine.”

      For the moment, rest was off the table.  
      “I’m not going to lie, we probably didn’t even sleep. I know I didn’t,” Herrera said. “I closed my eyes, and it was two o’clock in the morning. Time to get going.” 
      After checking in at the Incident Command Post, Herrera and the WSTF team — Lieutenant Gary Sida, firefighters Steven Olsson and Gabriel Rodriguez, and driver and engineer Tommy Montoya — were deployed to Ruidoso’s Casino Apache Travel Center off Highway 70.

      Deputy Chief James Herrera (far left) and his crew (L-R) Driver/Operator Tommy Montoya, Firefighter Gabe Rodriguez (top), Lieutenant Gary Sida, and Firefighter Stephen Olsson return to a hero’s welcome at White Sands Test Facility in Las Cruces, New Mexico. NASA/Anthony Luis Quiterio When Herrera and his four-man crew reached the edge of the deserted mountain town, the silence was more than unusual. It was unsettling, as heavy as the smoke suffocating the Sierra Blanca Peak. 
      “You could not see more than 100 feet,” Herrera said. “The only sign of life was all the fire agencies that were there. It was an eerie feeling.” 
      NASA’s arrival on scene brought a shift from anxiety to optimism and relief. 
      “There were tears in some of their eyes because we were showing up to help,” he said. “I could hear people saying, ‘What’s NASA doing here?’” He added, “One gentleman asked us how we got there. I joked that we drove the whole line from Kennedy Space Center.” 
      By the afternoon, the light-heartedness among comrades was extinguished as escalating winds charged the situation to a fever pitch. The fire, once perched atop the mountains, began hurling down in a landslide of embers, leaping across Highway 70, and forming a nearly complete ring of danger.  
      Breathing grew difficult as ground crews, with aerial units roaring overhead, battled a relentless assault of heat. WSTF Fire Department’s assignment evolved into an effort to protect anything and everything within reach.  “It makes you realize how fast something can be taken away from you,” Herrera said.

      The NASA WSTF Fire Department makes engine preparations along U.S. Route 70 at the Ruidoso border. Image courtesy of James Herrera Though disaster descended in an instant, the day itself had been long. Herrera and his team were released from duty after a grueling 12 hours spent providing critical support to wildland units and successfully protecting nearby buildings.  
      “Once it starts to calm down, you can feel your hands start to shake a little bit because this thing was getting out of control really fast,” Herrera said.  
      By the weekend, containment efforts were gaining ground thanks to the efforts of a combined 780-strong emergency response force. Eager to rebuild, Ruidoso residents trickled back in, but the village soon encountered another challenge: rain.
      Following the South Fork and Salt fires — which claimed an estimated 25,000 acres, 1,400 structures, and two lives — monsoons battered Ruidoso. Throughout July, deluges washed over the region’s burn scars in an ironic insult to injury leaving people trapped in vehicles and homes underwater. As recently as Aug. 7, evacuations continued as the Ruidoso Police Department worked to preemptively clear the Cherokee Mobile Village due to past flash flooding in the area.  
      In this harsh landscape of crisis and aftermath, Herrera views mutual aid as more than a tactical response, but a vital investment. 
      “Building goodwill with the community is akin to cultivating fertile ground for growth and success,” he said. “I strongly feel it strengthens the bond between us and our community.”  
      With the wet season expected to continue through the end of September, Ruidoso’s forecast remains uncertain. Even as storm clouds gather, one thing is clear: if the call comes again, the WSTF Fire Department will always be ready to answer.
      View the full article
  • Check out these Videos

×
×
  • Create New...