Jump to content

Most Distant Gravitational Lens Helps Weigh Galaxies and Deepens a Galactic Mystery


Recommended Posts

Posted
low_keystone.png

An international team of astronomers has found the most distant gravitational lens yet a galaxy that, as predicted by Albert Einstein's general theory of relativity, deflects and intensifies the light of an even more distant object. The discovery provides a rare opportunity to directly measure the mass of a distant galaxy. The observation also poses a mystery: lenses of this kind should be exceedingly rare. Given this and other recent finds, astronomers either have been phenomenally lucky or, more likely, they have underestimated substantially the number of small, very young galaxies in the early universe.

The team is composed of Arjen van der Wel, Glenn van de Ven, Michael Maseda, and Hans-Walter Rix (Max Planck Institute for Astronomy [MPIA]), Gregory Rudnick (University of Kansas and MPIA), Andrea Grazian (INAF), Steven Finkelstein (University of Texas at Austin), David Koo and Sandra M. Faber (University of California, Santa Cruz), Henry Ferguson, Anton Koekemoer, and Norman Grogin (STScI), and Dale Kocevski (University of Kentucky).

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s SPHEREx, which will map millions of galaxies across the entire sky, captured one of its first exposures March 27. The observatory’s six detectors each captured one of these uncalibrated images, to which visible-light colors have been added to represent infrared wavelengths. SPHEREx’s complete field of view spans the top three images; the same area of the sky is also captured in the bottom three images. NASA/JPL-Caltech Processed with rainbow hues to represent a range of infrared wavelengths, the new pictures indicate the astrophysics space observatory is working as expected.
      NASA’s SPHEREx (short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) has turned on its detectors for the first time in space. Initial images from the observatory, which launched March 11, confirm that all systems are working as expected.
      Although the new images are uncalibrated and not yet ready to use for science, they give a tantalizing look at SPHEREx’s wide view of the sky. Each bright spot is a source of light, like a star or galaxy, and each image is expected to contain more than 100,000 detected sources.
      There are six images in every SPHEREx exposure — one for each detector. The top three images show the same area of sky as the bottom three images. This is the observatory’s full field of view, a rectangular area about 20 times wider than the full Moon. When SPHEREx begins routine science operations in late April, it will take approximately 600 exposures every day.
      Each image in this uncalibrated SPHEREx exposure contains about 100,000 light sources, including stars and galaxies. The two insets at right zoom in on sections of one image, showcasing the telescope’s ability to capture faint, distant galaxies. These sections are processed in grayscale rather than visible-light color for ease of viewing.NASA/JPL-Caltech “Our spacecraft has opened its eyes on the universe,” said Olivier Doré, SPHEREx project scientist at Caltech and NASA’s Jet Propulsion Laboratory, both in Southern California. “It’s performing just as it was designed to.”
      The SPHEREx observatory detects infrared light, which is invisible to the human eye. To make these first images, science team members assigned a visible color to every infrared wavelength captured by the observatory. Each of the six SPHEREx detectors has 17 unique wavelength bands, for a total of 102 hues in every six-image exposure.
      Breaking down color this way can reveal the composition of an object or the distance to a galaxy. With that data, scientists can study topics ranging from the physics that governed the universe less than a second after its birth to the origins of water in our galaxy.
      “This is the high point of spacecraft checkout; it’s the thing we wait for,” said Beth Fabinsky, SPHEREx deputy project manager at JPL. “There’s still work to do, but this is the big payoff. And wow! Just wow!”
      During the past two weeks, scientists and engineers at JPL, which manages the mission for NASA, have executed a series of spacecraft checks that show all is well so far. In addition, SPHEREx’s detectors and other hardware have been cooling down to their final temperature of around minus 350 degrees Fahrenheit (about minus 210 degrees Celsius). This is necessary because heat can overwhelm the telescope’s ability to detect infrared light, which is sometimes called heat radiation. The new images also show that the telescope is focused correctly. Focusing is done entirely before launch and cannot be adjusted in space.
      “Based on the images we are seeing, we can now say that the instrument team nailed it,” said Jamie Bock, SPHEREx’s principal investigator at Caltech and JPL.
      How It Works
      Where telescopes like NASA’s Hubble and James Webb space telescopes were designed to target small areas of space in detail, SPHEREx is a survey telescope and takes a broad view. Combining its results with those of targeted telescopes will give scientists a more robust understanding of our universe.
      The observatory will map the entire celestial sky four times during its two-year prime mission. Using a technique called spectroscopy, SPHEREx will collect the light from hundreds of millions of stars and galaxies in more wavelengths any other all-sky survey telescope.
      Track the real-time location of NASA’s SPHEREx space observatory using the agency’s 3D visualization tool, Eyes on the Solar System. When light enters SPHEREx’s telescope, it’s directed down two paths that each lead to a row of three detectors. The observatory’s detectors are like eyes, and set on top of them are color filters, which are like color-tinted glasses. While a standard color filter blocks all wavelengths but one, like yellow- or rose-tinted glasses, the SPHEREx filters are more like rainbow-tinted glasses: The wavelengths they block change gradually from the top of the filter to the bottom.
      “I’m rendered speechless,” said Jim Fanson, SPHEREx project manager at JPL. “There was an incredible human effort to make this possible, and our engineering team did an amazing job getting us to this point.”
      More About SPHEREx
      The SPHEREx mission is managed by JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech managed and integrated the instrument. Data will be processed and archived at IPAC at Caltech. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      For more about SPHEREx, visit:
      https://science.nasa.gov/mission/spherex/
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2025-045
      Share
      Details
      Last Updated Apr 01, 2025 Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Galaxies Origin & Evolution of the Universe The Search for Life The Universe Explore More
      3 min read Discovery Alert: Four Little Planets, One Big Step
      The Discovery Four rocky planets much smaller than Earth orbit Barnard’s Star, the next closest…
      Article 13 hours ago 5 min read NASA Awards Astrophysics Postdoctoral Fellowships for 2025
      The highly competitive NASA Hubble Fellowship Program (NHFP) recently named 24 new fellows to its…
      Article 1 day ago 2 min read Hubble Spots a Chance Alignment
      The subject of today’s NASA/ESA Hubble Space Telescope image is the stunning spiral galaxy NGC…
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Image: Spying a spiral through a cosmic lens (Webb telescope image) View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Double Asteroid Redirection Test required extreme precision in mission planning to achieve its mission of impacting an asteroid. The founders of Continuum Space worked on astrodynamics relating to this mission, which they used to inform their product.NASA Planning space missions is a very involved process, ensuring orbits are lined up and spacecraft have enough fuel is imperative to the long-term survival of orbital assets. Continuum Space Systems Inc. of Pasadena, California, produces a cloud-based platform that gives mission planners everything they need to certify that their space resources can accomplish their goals. 

      Continuum’s story begins at NASA’s Jet Propulsion Laboratory in Southern California. Loic Chappaz, the company’s co-founder, started at JPL as an intern working on astrodynamics related to NASA’s Double Asteroid Redirection Test. There he met Leon Alkalai, a JPL technical fellow who spent his 30-year career at the center planning deep space missions. After Alkalai retired from NASA, he founded Mandala Space Ventures, a startup that explored several avenues of commercial space development. Chappaz soon became Mandala’s first employee, but to plan their future, Mandala’s leadership began thinking about the act of planning itself. 

      Because the staff had decades of combined experience at JPL, they knew the center had the building blocks for the software they needed. After licensing several pieces of software from JPL, the company began building planning systems that were highly adaptable to any space mission they could come up with. Mandala eventually evolved into a venture firm that incubated space-related startups. However, because Mandala had invested considerably in developing mission-planning tools, further development could be performed by a new company, and Continuum was fully spun off from Mandala in 2021. 

      Continuum’s platform includes several features for mission planners, such as plotting orbital maneuvers and risk management evaluations. Some of these are built upon software licensed from the Jet Propulsion Laboratory.Continuum Space Systems Inc. Continuum’s tools are designed to take a space mission from concept to completion. There are three different components to their “mission in a box” — design, build and test, and mission operations. The base of these tools are several pieces of software developed at NASA. As of 2024, several space startups have begun planning missions with Continuum’s NASA-inspired software, as well as established operators of satellite constellations. From Continuum to several startups, NASA technologies continue to prove a valuable foundation for the nation’s space economy.  
      Read More Share
      Details
      Last Updated Mar 25, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read NASA Expertise Helps Record all the Buzz
      Article 2 weeks ago 2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
      Article 3 weeks ago 3 min read NASA Partners with US Patent and Trademark Office to Advance Technology Transfer
      Article 3 months ago Keep Exploring Discover Related Topics
      Planetary Defense – DART
      NASA’s Double Asteroid Redirection Test (DART), built and managed by the Johns Hopkins Applied Physics Laboratory (APL) for NASA’s Planetary…
      Jet Propulsion Laboratory – News
      Science Missions
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:06:44 The European Space Agency’s Euclid mission has scouted out the three areas in the sky where it will eventually provide the deepest observations of its mission.
      In just one week of observations, with one scan of each region so far, Euclid already spotted 26 million galaxies. The farthest of those are up to 10.5 billion light-years away.
      In the coming years, Euclid will pass over these three regions tens of times, capturing many more faraway galaxies, making these fields truly ‘deep’ by the end of the nominal mission in 2030.
      The first glimpse of 63 square degrees of the sky, the equivalent area of more than 300 times the full Moon, already gives an impressive preview of the scale of Euclid’s grand cosmic atlas when the mission is complete. This atlas will cover one-third of the entire sky – 14 000 square degrees – in this high-quality detail.
      Explore the three deep field previews in ESASky:
      -          Euclid Deep Field South
      -          Euclid Deep Field Fornax:
      -          Euclid Deep Field North:
      Read more: Euclid opens data treasure trove, offers glimpse of deep fields
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Test flights help airplane and drone manufacturers identify which parts of the aircraft are creating the most noise. Using hundreds of wired microphones makes it an expensive and time-consuming process to improve the design to meet noise requirements. Credit: NASA Airplane manufacturers running noise tests on new aircraft now have a much cheaper option than traditional wired microphone arrays. It’s also sensitive enough to help farmers with pest problems. A commercial wireless microphone array recently created with help from NASA can locate crop-threatening insects by listening for the sounds they make in fields. 

      Since releasing its first commercial product in 2017, a sensor for wind tunnel testing developed with extensive help from NASA (Spinoff 2020), Interdisciplinary Consulting Corporation (IC2) has doubled its staff and moved to a larger lab and office space to produce its new WirelessArray product. Interested in making its own flight tests more affordable, NASA’s Langley Research Center in Hampton, Virginia, supported this project with Small Business Innovation Research contracts and expert consulting.

      Airplanes go through noise testing and require certification that they don’t exceed the noise level set for their body type by the Federal Aviation Administration. When an airplane flies directly overhead, the array collects noise data to build a two-dimensional map of the sound pressure and its source. A custom software package translates that information for the end user.

      For previous NASA noise testing, multiple semi-trucks hauled all the sensors, wires, power generators, racks of servers, and other equipment required for one flight test. The setup and teardown took six people three days. By contrast, two people can pack the WirelessArray into a minivan and set it up in a day. 

      IC2 is working with an entomologist to use acoustic data to listen for high-frequency insect sounds in agricultural settings. Discovering where insects feed on crops will make it possible for farmers to intervene before they do too much damage while limiting pesticide use to those areas. Whether it’s helping planes in the sky meet noise requirements or keeping harmful insects away from crops, NASA technology is finding sound-based solutions for the benefit of all. 
      Read More Share
      Details
      Last Updated Mar 14, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
      Article 1 week ago 3 min read NASA Partners with US Patent and Trademark Office to Advance Technology Transfer
      Article 3 months ago 3 min read NASA Gives The World a Brake
      Article 3 months ago Keep Exploring Discover Related Topics
      Langley Expertise and Facilities
      Humans in Space
      Technology Transfer & Spinoffs
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...