Jump to content

NASA’s Economic Benefit Reaches All 50 States


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sol 4370-4371: All About the Polygons
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on Nov. 20, 2024 — sol 4369, or Martian day 4,369 of the Mars Science Laboratory mission — at 05:47:04 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Nov. 20, 2024
      We planned two very full sols today! The sol 4369 drive completed successfully, and the rover was in a stable enough position that we could unstow the arm — something we don’t take for granted in the exceedingly rocky terrain of the sulfate unit! Today the team decided to investigate several rocks in our workspace that are covered in cracks, or fractures, that form polygonal patterns. We are interested to better characterize the geometry of these cracks and to see if they are associated with any compositional differences from the rock. Both pieces of information will give us clues about how they formed. Did they form when stresses pushed on the rock in just the right manner to fracture it into polygonal shapes? Or do the cracks record the rock expanding and contracting, either due to massive changes in temperatures on the Martian surface, or minerals within the rock gaining and losing water? Or perhaps it is something different?
      We selected two contact science targets to investigate in our attempt to answer these questions. The target named “Buttermilk” is one of the skinny raised ridges associated with these cracks. We will be placing APXS at three different places over this feature to try to characterize its chemistry.  Our second contact science target,  “Lee Vining,” gives us a nice 3D view into these cracks. Here, we will collect two MAHLI mosaics, one on each side of the rock that’s close to the rover, to characterize the geometry of the fractures. ChemCam will also get in on the action with a LIBS observation on a fracture fill named “Crater Crest,” as well as an observation on a dark-toned, platy rock called “Lost Arrow.” Mastcam will collect observations of several more polygonally fractured rocks further away from Curiosity in “The Dardanelles” series of mosaics. Some environmental science observations will round out the plan before our drive will take us about 25 meters further (about 82 feet) to the southwest.
      Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Nov 23, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4368-4369: The Colors of Fall – and Mars


      Article


      2 days ago
      3 min read Sols 4366–4367: One of Those Days on Mars (Sulfate-Bearing Unit to the West of Upper Gediz Vallis)


      Article


      4 days ago
      2 min read Sols 4362-4363: Plates and Polygons


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      5 min read
      NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode
      After two decades in space, NASA’s Neil Gehrels Swift Observatory is performing better than ever thanks to a new operational strategy implemented earlier this year. The spacecraft has made great scientific strides in the years since scientists dreamed up a new way to explore gamma-ray bursts, the most powerful explosions in the universe.
      “The idea for Swift was born during a meeting in a hotel basement in Estes Park, Colorado, in the middle of a conference,” said John Nousek, the Swift mission director at Pennsylvania State University in State College. “A bunch of astrophysicists got together to brainstorm a mission that could help us solve the problem of gamma-ray bursts, which were a very big mystery at the time.”
      Watch to learn how NASA’s Neil Gehrels Swift Observatory got its name.
      NASA’s Goddard Space Flight Center Gamma-ray bursts occur all over the sky without warning, with about one a day detected on average. Astronomers generally divide these bursts into two categories. Long bursts produce an initial pulse of gamma rays for two seconds or more and occur when the cores of massive stars collapse to form black holes. Short bursts last less than two seconds and are caused by the mergers of dense objects like neutron stars.
      But in 1997, at the time of that basement meeting, the science community disagreed over the origin models for these events. Astronomers needed a satellite that could move quickly to locate them and move to point additional instruments at their positions.
      What developed was Swift, which launched Nov. 20, 2004, from Complex 17A at what is now Cape Canaveral Space Force Station in Florida. Originally called the Swift Observatory for its ability to quickly point at cosmic events, the mission team renamed the spacecraft in 2018 after its first principal investigator Neil Gehrels.
      Swift uses several methods for orienting and stabilizing itself in space to study gamma-ray bursts.
      Sensors that detect the Sun’s location and the direction of Earth’s magnetic field provide the spacecraft with a general sense of its location. Then, a device called a star tracker looks at stars and tells the spacecraft how to maneuver to keep the observatory precisely pointed at the same position during long observations.
      Swift uses three spinning gyroscopes, or gyros, to carry out those moves along three axes. The gyros were designed to align at right angles to each other, but once in orbit the mission team discovered they were slightly misaligned. The flight operations team developed a strategy where one of the gyros worked to correct the misalignment while the other two pointed Swift to achieve its science goals.
      The team wanted to be ready in case one of the gyros failed, however, so in 2009 they developed a plan to operate Swift using just two.
      Swift orbits above Earth in this artist’s concept. NASA’s Goddard Space Flight Center Conceptual Image Lab Any change to the way a telescope operates once in space carries risk, however. Since Swift was working well, the team sat on their plan for 15 years.
      Then, in July 2023, one of Swift’s gyros began working improperly. Because the telescope couldn’t hold its pointing position accurately, observations got progressively blurrier until the gyro failed entirely in March 2024.
      “Because we already had the shift to two gyros planned out, we were able to quickly and thoroughly test the procedure here on the ground before implementing it on the spacecraft,” said Mark Hilliard, Swift’s flight operations team lead at Omitron, Inc. and Penn State. “Actually, scientists have commented that the accuracy of Swift’s pointing is now better than it was since launch, which is really encouraging.”
      For the last 20 years, Swift has contributed to groundbreaking results — not only for gamma-ray bursts but also for black holes, stars, comets, and other cosmic objects.
      “After all this time, Swift remains a crucial part of NASA’s fleet,” said S. Bradley Cenko, Swift’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The satellite’s abilities have helped pioneer a new era of astrophysics called multimessenger astronomy, which is giving us a more well-rounded view of how the universe works. We’re looking forward to all Swift has left to teach us.”
      Swift is a key part of NASA’s strategy to look for fleeting and unpredictable changes in the sky with a variety of telescopes that use different methods of studying the cosmos.
      Goddard manages the Swift mission in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico, and Northrop Grumman Space Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory in Italy, and the Italian Space Agency.

      Download high-resolution images on NASA’s Scientific Visualization Studio

      By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated Nov 20, 2024 Editor Jeanette Kazmierczak Location Goddard Space Flight Center Related Terms
      Astrophysics Gamma-Ray Bursts Goddard Space Flight Center Neil Gehrels Swift Observatory The Universe View the full article
    • By NASA
      Linda Spuler, emergency manager at NASA’s Johnson Space Center in Houston, believes that everyone has a story. “Our stories highlight what we have in common, but they also make us each unique,” she said. 

      Spuler has worked at Johnson for over 32 years, spending most of her career in Center Operations. Her story has involved helping to coordinate emergency response teams at Johnson in preparation for natural disasters. “Since Johnson is situated on the coast, a good portion of my job revolves around planning for hurricanes,” she said.   

      Spuler has dealt with natural disasters at Johnson from Tropical Storm Allison in 2001 to Hurricane Beryl in 2024, but none had a greater personal impact than Hurricane Ike, which wrought havoc in Texas in September 2008. “Participating in the response to Hurricane Ike was a proud moment for me,” she said. “We worked from sunup to sundown restoring the center. Civil servants and contractors from various organizations came together, and for those two weeks, our differences didn’t matter.”  
      NASA’s Johnson Space Center Emergency Manager Linda Spuler, front, leads an emergency exercise for first responders. Image courtesy of Linda Spuler Spuler believes that NASA’s mission unites everyone – team members, astronauts, and support teams alike. “Remembering why we are all here energizes us and gets us excited about working for NASA,” she said.  

      Spuler’s journey at NASA began as a dream not originally her own. Her path was shaped by the aspirations of her mother, who was born on an Ojibwe (Chippewa) reservation in Ashland, Wisconsin.  
      “Although my grandmother lived in Chicago, she returned to the reservation to have her children. My mom is still a voting member of the Bad River Tribe,” said Spuler. 

      “My mom was studying aerospace engineering at the University of Chicago when she met my dad, a fun-loving electrical engineering major who traced his lineage back to Davy Crockett on his father’s side and Ireland on his mother’s,” said Spuler. “She chose to abandon aerospace to marry my dad, whose degree and love for space brought him to work at Johnson.” 
      Linda Spuler accepts the Thirty-Year Service Award from Johnson Director Vanessa Wyche to commemorate her service at NASA. NASA/David DeHoyos Spuler said her mother was very proud that her father worked for NASA. “She was very happy when I chose to work here, too,” she said. “She taught me the value and reward of working hard. My mom is proud of her heritage but she is cautious of sharing her story.” 
      Linda Spuler at an Easter egg hunt at NASA’s Johnson Space Center in 1971. Image courtesy of Linda Spuler Spuler enjoys learning about Ojibwe culture from her mother. “Every Thanksgiving, we enjoy wild rice from the Bad River sent from the “aunties” that still live on the reservation,” Spuler shared. She also represents her culture and pride through her work, honoring the legacy of those who came before her and sharing the story of her mother, her father, and now herself.
      Linda Spuler receives the 2019 Furlough Heroes Awards alongside her son, Logan. NASA/James Blair “I celebrate the unique story that makes me part Ojibwe, part Polish, part Texas revolutionary, part Irish, part English, and all me,” she said.  
      View the full article
    • By NASA
      Bone cellsNASA Malcolm O’Malley and his mom sat nervously in the doctor’s office awaiting the results of his bloodwork. This was no ordinary check-up. In fact, this appointment was more urgent and important than the SATs the seventeen-year-old, college hopeful had spent months preparing for and was now missing in order to understand his symptoms. 
      But when the doctor shared the results – he had off-the-charts levels of antibodies making him deathly allergic to shellfish – O’Malley realized he had more questions than answers. Like: Why is my immune system doing this? How is it working? Why is it reacting so severely and so suddenly (he’d enjoyed shrimp less than a year ago)? And why does the only treatment – an injection of epinephrine – have nothing to do with the immune system, when allergies appear to be an immune system problem? Years later, O’Malley would look to answer some of these questions while interning in the Space Biosciences Research Branch at NASA’s Ames Research Center in California’s Silicon Valley.
      “Anaphylaxis is super deadly and the only treatment for it is epinephrine; and I remember thinking, ‘how is this the best we have?’ because epinephrine does not actually treat the immune system at all – it’s just adrenaline,” said O’Malley, who recently returned to his studies as a Ph.D. student of Biomedical Engineering at the University of Virginia (UVA) in Charlottesville. “And there’s a thousand side effects, like heart attacks and stroke – I remember thinking ‘these are worse than the allergy!’”
      O’Malley’s curiosity and desire to better understand the mechanisms and connections between what triggers different immune system reactions combined with his interest in integrating datasets into biological insights inspired him to shift his major from computer science to biomedical engineering as an undergraduate student. With his recent allergy diagnosis and a lifelong connection to his aunt who worked at the UVA Heart and Vascular Center, O’Malley began to build a bridge between the immune system and heart health. By the time he was a senior in college, he had joined the Cardiac Systems Biology Lab, and had chosen to focus his capstone project on better understanding the role of neutrophils, a specific type of immune cell making up 50 to 70% of the immune system, that are involved in cardiac inflammation in high blood pressure and after heart attacks.
      jsc2022e083018 (10/26/2022) — A preflight image of beating cardiac spheroid composed of iPSC-derived cardiomyocytes (CMs), endothelial cells (ECs), and cardiac fibroblasts (CFs). These cells are incubated and put under the microscope in space as part of the Effect of Microgravity on Drug Responses Using Heart Organoids (Cardinal Heart 2.0) investigation. Image courtesy of Drs. Joseph Wu, Dilip Thomas and Xu Cao, Stanford Cardiovascular Institute “The immune system is involved in everything,” O’Malley says. “Anytime there’s an injury – a paper cut, a heart attack, you’re sick – the immune system is going to be the first to respond; and neutrophils are the first responders.”
      O’Malley’s work to determine what regulates the immune system’s interrelated responses – like how one cell could affect other cells or immune processes downstream – provided a unique opportunity for him to support multiple interdisciplinary NASA biological and physical sciences research projects during his 10-week internship at NASA Ames over the summer of 2024. O’Malley applied machine learning techniques to the large datasets the researchers were using from experiments and specimens collected over many years to help identify possible causes of inflammation seen in the heart, brain, and blood, as well as changes seen in bones, metabolism, the immune system, and more when humans or other model organisms are exposed to decreased gravity, social isolation, and increased radiation. These areas are of keen interest to NASA due to the risks to human health inherent in space exploration and the agency’s plans to send humans on long-duration missions to the Moon, Mars, and beyond.
      “It’s exciting that we just never know what’s going to happen, how the immune system is going to react until it’s already been activated or challenged in some way,” said O’Malley. “I’m particularly interested in the adaptive immune system because it’s always evolving to meet new challenges; whether it’s a pandemic-level virus, bacteria or something on a mission to Mars, our bodies are going to have some kind of adaptive immune response.”
      During his NASA internship, O’Malley applied a statistical analysis techniques to plot and make more sense of the massive amounts of life sciences data. From there, researchers could find out which proteins, out of hundreds, or attributes – like differences in sex – are related to which behaviors or outcomes. For example, through O’Malley’s analysis, researchers were able to better pinpoint the proteins involved in inflammation of the brain that may play a protective role in spatial memory and motor control during and after exposure to radiation – and how we might be able to prevent or mitigate those impacts during future space missions and even here on Earth.
      As someone who’s both black and white, representation is important to me. It’s inspiring to think there will be people like me on the Moon – and that I’m playing a role in making this happen
      Malcolm o'malley
      Former NASA Intern
      “I had this moment where I realized that since my internship supports NASA’s Human Research Program that means the work I’m doing directly applies to Artemis, which is sending the first woman and person of color to the Moon,” reflected O’Malley. “As someone who’s both black and white, representation is important to me. It’s inspiring to think there will be people like me on the Moon – and that I’m playing a role in making this happen.”
      Artist conception of a future Artemis Base Camp on the lunar surface NASA When O’Malley wasn’t exploring the mysteries of the immune system for the benefit of all at NASA Ames, he taught himself how to ride a bike and started to surf in the nearby waters of the Pacific Ocean. O’Malley considers Palmyra, Virginia, his hometown and he enjoys playing sports – especially volleyball, water polo, and tennis – reading science fiction and giving guest lectures to local high school students hoping to spark their curiosity. 
      O’Malley’s vision for the future of biomedical engineering reflects his passion for innovation. “I believe that by harnessing the unique immune properties of other species, we can achieve groundbreaking advancements in limb regeneration, revolutionize cancer therapy, and develop potent antimicrobials that are considered science fiction today,” he said.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA logo In fiscal year 2023, NASA investments supported 66,208 jobs in the state of California, generated $18.5 billion in economic output and $1 billion in tax revenue to the state’s economy.
      Overall, NASA generated an estimated $9.5 billion in federal, state, and local taxes throughout the United States.
      NASA’s Armstrong Flight Research Center in Edwards, California is one of three NASA centers in the state that contributes to this economic achievement. The center supports critical research in sustainable flight, air mobility, and airborne science, reinforcing the region as a hub of aerospace innovation.
      Most notably, NASA Armstrong plays a unique role in the Quesst mission and X-59 project, aimed at reducing the sonic booms into quieter “sonic thumps,” to change regulations impeding supersonic flight over land. Additionally, maturing key airframe technologies with the X-66 aircraft in the Sustainable Flight Demonstrator project which may influence the next generation single-aisle seat class airliner. The Center also supports the research of electric air taxis and drones to operate safely in the national airspace as well as supporting science aircraft for NASA’s Earth Science Mission.
      NASA’s Moon to Mars campaign generated 16,129 jobs and $4.7 billion in economic output in California. Collaborations with contractors like Boeing and Lockheed Martin further extended these benefits by creating thousands of high-skilled jobs in the Antelope Valley and across the state.
      NASA also fosters partnerships with educational institutions across the state, investing $39.5 million in universities to cultivate the next generation of aerospace innovators. These investments bring STEM opportunities to local communities and prepare students for careers in cutting-edge industries – adding to the agency’s most valuable asset, its workforce.
      NASA embraces the challenges of exploring the unknown and making the impossible possible as we continue our global leadership in science, human spaceflight, aerospace innovation, and technology development, and support the U.S. economy and benefit all.
      Read the full Economic Impact Report for Fiscal Year 2023.
      -end-
      Nicolas Cholula / Sarah Mann
      NASA’s Armstrong Flight Research Center
      661-714-3853 / 661-233-2758
      nicolas.h.cholula@nasa.gov /sarah.mann@nasa.gov
      Share
      Details
      Last Updated Oct 24, 2024 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govSarah Mannsarah.mann@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Explore More
      4 min read NASA Pilots Add Perspective to Research
      Article 1 week ago 3 min read Sacrifice and Success: NASA Engineer Honors Family Roots
      Article 1 week ago 4 min read Sacrificio y Éxito: Ingeniero de la NASA honra sus orígenes familiares
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong People
      Armstrong Capabilities & Facilities
      Aircraft Flown at Armstrong
      View the full article
  • Check out these Videos

×
×
  • Create New...