Jump to content

Recommended Posts

Posted
Proba-2_sees_two_partial_eclipses_card_f Video: 00:00:23

ESA’s Proba-2 captured two partial solar eclipses on 25 October 2022.

A solar eclipse is caused by the movement of the Moon around Earth. Despite their much different sizes, due to their separation, the Moon appears to be about the same size as the significantly larger Sun in the sky. Occasionally, the Moon passes in front of the Sun, blocking its light, so that part of the Earth’s surface is in the Moon’s shadow. The line-up is not always perfect, and so not every eclipse is a total solar eclipse.

On 25 October only part of the Sun’s light was blocked by the Moon, creating what is known as a partial eclipse. It was visible from most of Europe, North-Africa, the middle East and parts of Asia, with the Moon blocking 82% of the sunlight near the North Pole. In Europe up to 40% of the sunlight was obscured during the event.

This partial eclipse was observed by ESA’s Proba-2 mission from its unique vantage point in space. Its SWAP instrument studies the Sun in the extreme ultraviolet (EUV) light where it focuses on the solar corona – the Sun’s hot turbulent atmosphere – at temperatures of about a million degrees. The corona is seen in the background of this video.

For us on Earth, the Moon passes only once in front of the Sun during a solar eclipse. Since Proba-2 orbits the Earth in about 100 minutes, it was able to observe this eclipse not once but twice. Additionally, the Moon was first observed while traversing the field of view in the upper right corner, but not blocking any solar light. The first observation of the eclipse around 10:30 UTC (12:30 CEST) was cut short as Proba-2 experienced an occultation. Such an occultation occurs when Proba-2 flies through the Earth’s atmosphere and the SWAP instrument is not active. The second partial eclipse was captured around 12:25 UTC (14:25 CEST). This movie shows both the eclipses.

ESA's Sun-watching spacecraft monitor the Sun's behaviour to better understand the influence of space weather on our home planet. The ESA-led Solar Orbiter mission, in partnership with NASA, is orbiting the Sun from closer than ever before and will provide the first high resolution images of the Sun's poles. Meanwhile ESA Vigil will be the first mission to keep a constant eye on brewing space weather events, to better protect vital infrastructure on Earth and in orbit. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A digital rendering of the baseline configuration for Blue Origin’s free-flying commercial space station, Orbital Reef, which continues to be developed as part of a Space Act Agreement with NASA.Blue Origin A NASA-supported commercial space station, Blue Origin’s Orbital Reef, recently completed a human-in-the-loop testing milestone as the agency works toward developing commercial space stations in low Earth orbit.

      The human-in-the-loop test scenarios utilized individual participants or small groups to perform day-in-the-life walkthroughs in life-sized mockups of major station components. Participants provided feedback while simulating microgravity operations, including cargo transfer, trash transfer, stowage, and worksite assessments.

      “Human-in-the-loop and iterative testing are essential to inform key decisions and mitigate risks to crew health and safety,” said Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “NASA’s insight into our partner’s testing milestones enables the agency to gain insight into partner progress and share expertise, ultimately improving industry and NASA’s mission success.”
      Test subjects in the mockup for Blue Origin’s free-flying commercial space station, Orbital Reef, during the human-in-the-loop test.Blue Origin The milestone is part of a NASA Space Act Agreement originally awarded to Blue Origin in 2021 and focused on the design progress for multiple worksites, floors, and translation paths within the station. This ensures a commercial station can support human life, which is critical to advancing scientific research in a microgravity environment and maintaining a continuous human presence in low Earth orbit.

      The test evaluated various aspects of Orbital Reef’s environment to provide information needed for the space station’s design. Assessment areas included the private crew quarters, dining area, lavatory, research laboratory, and berthing and docking hatches.

      To facilitate the test, Blue Origin built stand-alone mockups of each floor in the internally developed habitable module. These mockups will be iteratively updated as the fidelity of components and subsystems matures, enabling future human-in-the-loop testing.

      The research team’s observations will be used to provide design recommendations for worksite volumes, layouts, restraint and mobility aid layouts, usability and workload, and positioning of interfaces and equipment.

      NASA supports the design and development of multiple commercial space stations, including Orbital Reef, through funded and unfunded agreements. The current design and development phase will soon be followed by the procurement of services from one or more companies, where NASA aims to be one of many customers for low Earth orbit stations.

      NASA is committed to maintaining a continuous human presence in low Earth orbit as the agency transitions from the International Space Station to commercial space stations. For nearly 25 years, NASA has supported a continuous presence in low Earth orbit aboard the space station and will continue to build on the agency’s extensive human spaceflight experience to advance future scientific and exploration goals.

      For more information about commercial space stations, visit:
      www.nasa.gov/commercialspacestations
      A test subject in the mockup for Blue Origin’s free-flying commercial space station, Orbital Reef, during the human-in-the-loop test.Blue Origin Keep Exploring Discover More Topics
      Low Earth Orbit Economy
      Commercial Space
      Commercial Crew Program
      Humans In Space

      View the full article
    • By NASA
      7 min read
      Eclipses, Science, NASA Firsts: Heliophysics Big Year Highlights 
      One year ago today, a total solar eclipse swept across the United States. The event was a cornerstone moment in the Heliophysics Big Year, a global celebration of the Sun’s influence on Earth and the entire solar system. From October 2023 to December 2024 — a period encompassing two solar eclipses across the U.S., two new NASA heliophysics missions, and one spacecraft’s history-making solar flyby — NASA celebrated the Sun’s widespread influence on our lives.  
      An infographic showing key numbers summarizing the activities and events of the Heliophysics Big Year, which spanned from Oct. 14, 2023 – Dec. 24, 2024.  NASA/Miles Hatfield/Kristen Perrin Annular Solar Eclipse
      An annular (or “ring of fire”) solar eclipse occurred Oct. 14, 2023, and kicked off the Helio Big Year with a bang. Millions of people across North America witnessed the Moon crossing in front of the Sun, creating this brilliant celestial event. NASA’s live broadcast had more than 11 million views across different platforms.  
      On Oct. 14, 2023, an annular solar eclipse crossed North, Central, and South America. Visible in parts of the United States, Mexico, and many countries in South and Central America, millions of people in the Western Hemisphere were able to experience this “ring of fire” eclipse. NASA’s official broadcast and outreach teams were located in Kerrville, TX, and Albuquerque, NM, to capture the event and celebrate with the communities in the path of annularity. 
      Credit: NASA/Ryan Fitzgibbons  Before the eclipse, NASA introduced the 2023 Eclipse Explorer, an interactive map to explore eclipse details for any location in the United States. NASA shared tips on eclipse safety, including through a video with NSYNC’s Lance Bass and even with an augmented reality filter. 
      Scientists also studied conditions during the annular eclipse with sounding rockets, balloons, and amateur radio.  
      Total Solar Eclipse 
      On April 8, 2024, millions of people across North America experienced a total solar eclipse that darkened parts of 15 U.S. states in the path of totality.  
      Ahead of the event, NASA hosted a widespread safety campaign, handed out over 2 million solar viewing glasses, and produced an interactive map to help viewers plan their viewing experience. On eclipse day, NASA also hosted a live broadcast from locations across the country, drawing over 38 million views. 
      Researchers studied the eclipse and its effects on Earth using a variety of techniques, including international radar networks, scientific rockets, weather balloons, and even high-altitude NASA WB-57 jets. Several NASA-funded citizen science projects also conducted experiments. These projects included more than 49,000 volunteers who contributed an astounding 53 million observations.  
      This infographic shares metrics from citizen science projects that occurred during the total solar eclipse on April 8, 2024. NASA/Kristen Perrin “We have opened a window for all Americans to discover our connection to the Sun and ignited enthusiasm for engaging with groundbreaking NASA science, whether it’s through spacecraft, rockets, balloons, or planes,” said Kelly Korreck, a Heliophysics program scientist at NASA Headquarters in Washington. “Sharing the excitement of NASA heliophysics with our fellow citizens has truly been amazing.” 
      Science Across the Solar System 
      NASA’s heliophysics missions gather data on the Sun and its effects across the solar system.  
      The Atmospheric Waves Experiment (AWE) mission launched from NASA’s Kennedy Space Center in Florida Nov. 9, 2023, and was installed on the International Space Station nine days later. This mission studies atmospheric gravity waves, how they form and travel through Earth’s atmosphere, and their role in space weather. 
      Orbital footage from the International Space Station shows NASA’s Atmospheric Waves Experiment (AWE) as it was extracted from SpaceX’s Dragon cargo spacecraft. NASA/International Space Station On Nov. 4, 2024, the Coronal Diagnostic Experiment (CODEX) mission also launched to the space station, where it studies the solar wind, with a focus on what heats it and propels it through space.  
      Pictured is the CODEX instrument inside the integration and testing facility at NASA’s Goddard Space Flight Center. NASA/CODEX team The Aeronomy of Ice in the Mesosphere (AIM) mission ended after 16 years studying Earth’s highest clouds, called polar mesospheric clouds.  
      An artist’s concept shows the Aeronomy of Ice in the Mesosphere (AIM) spacecraft orbiting Earth.   NASA’s Goddard Space Flight/Center Conceptual Image Lab  NASA’s Ionospheric Connection Explorer (ICON) also ended after three successful years studying the outermost layer of Earth’s atmosphere, called the ionosphere. 
      NASA’s ICON, shown in this artist’s concept, studied the frontiers of space, the dynamic zone high in our atmosphere where terrestrial weather from below meets space weather above.  NASA’s Goddard Space Flight Center/Conceptual Image Lab  Voyager has been operating for more than 47 years, continuing to study the heliosphere and interstellar space. In October 2024, the Voyager 1 probe stopped communicating. The mission team worked tirelessly to troubleshoot and ultimately reestablish communications, keeping the mission alive to continue its research.  
      In this artist’s conception, NASA’s Voyager 1 spacecraft has a bird’s-eye view of the solar system. The circles represent the orbits of the major outer planets: Jupiter, Saturn, Uranus, and Neptune. Launched in 1977, Voyager 1 visited the planets Jupiter and Saturn. The spacecraft is now 13 billion miles from Earth, making it the farthest and fastest-moving human-made object ever built. In fact, Voyager 1 is now zooming through interstellar space, the region between the stars that is filled with gas, dust, and material recycled from dying stars. NASA’s Hubble Space Telescope is observing the material along Voyager’s path through space. NASA/STSci While the goal of the NASA heliophysics fleet is to study the Sun and its influence, these missions often make surprising discoveries that they weren’t originally designed to. From finding 5,000 comets to studying the surface of Venus, NASA highlighted and celebrated these bonus science connections during the Helio Big Year. 
      Solar Maximum 
      Similar to Earth, the Sun has its own seasons of activity, with a solar minimum and solar maximum during a cycle that lasts about 11 years. The Helio Big Year happened to coincide with the Sun’s active period, with NASA and NOAA announcing in October 2024 that the Sun had reached solar maximum, the highest period of activity. Some of the largest solar storms on current record occurred in 2024, and the largest sunspot in nearly a decade was spotted in the spring of 2024, followed by a colossal X9.0 solar flare Oct. 3, 2024.  
      Sunspots are cooler, darker areas on the solar surface where the Sun’s magnetic field gets especially intense, often leading to explosive solar eruptions. This sunspot group was so big that nearly 14 Earths could fit inside it! The eruptions from this region resulted in the historic May 2024 geomagnetic storms, when the aurora borealis, or northern lights, were seen as far south as the Florida Keys.
      Credit: NASA/Beth Anthony Viewers across the U.S. spotted auroras in their communities as a result of these storms, proving that you can capture amazing aurora photography without advanced equipment. 
      The Big Finale: Parker’s Close Approach to the Sun 
      NASA’s Parker Solar Probe holds the title as the closest human-made object to the Sun. On Dec. 24, 2024, Parker made history by traveling just 3.8 million miles from the Sun’s surface at a whopping 430,000 miles per hour.  
      “Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters. 
      Controllers have confirmed NASA’s mission to “touch” the Sun survived its record-breaking closest approach to the solar surface on Dec. 24, 2024. 
      Credit: NASA/Joy Ng Parker Solar Probe’s close approach capped off a momentous Heliophysics Big Year that allowed NASA scientists to gather unprecedented data and invited everyone to celebrate how the Sun impacts us all. In the growing field of heliophysics, the Helio Big Year reminded us all how the Sun touches everything and how important it is to continue studying our star’s incredible influence.  
      A Big Year Ahead 
      Though the Helio Big Year is over, heliophysics is only picking up its pace in 2025. We remain in the solar maximum phase, so heightened solar activity will continue into the near future. In addition, several new missions are expected to join the heliophysics fleet by year’s end. 
      The PUNCH mission, a set of four Sun-watching satellites imaging solar eruptions in three dimensions, and EZIE, a trio of Earth-orbiting satellites tracing the electrical currents powering Earth’s auroras, have already launched. The LEXI instrument, an X-ray telescope studying Earth’s magnetosphere from the Moon, also launched through NASA’s CLPS (Commercial Lunar Payload Services) initiative. 
      Future missions slated for launch include TRACERS, which will investigate the unusual magnetic environment near Earth’s poles, and ESCAPADE, venturing to Mars to measure the planet’s unique magnetic environment. 
      The last two missions will share a ride to space. The Carruthers Geocorona Observatory will look back at home, studying ultraviolet light emitted by the outermost boundaries of our planet’s atmosphere. The IMAP mission will instead look to the outermost edges of our heliosphere, mapping the boundaries where the domain of our Sun transitions into interstellar space. 
      By Desiree Apodaca
      NASA’s Goddard Space Flight Center
      Share








      Details
      Last Updated Apr 08, 2025 Editor Miles Hatfield Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate The Solar System The Sun Explore More
      5 min read Connected Learning Ecosystems: Educators Gather to Empower Learners and Themselves


      Article


      21 hours ago
      2 min read Hubble Studies a Nearby Galaxy’s Star Formation


      Article


      4 days ago
      3 min read Hubble Spots Stellar Sculptors in Nearby Galaxy


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By Amazing Space
      UK Partial Solar eclipse LIVE
    • By European Space Agency
      Using the unique infrared sensitivity of the NASA/ESA/CSA James Webb Space Telescope, researchers can examine ancient galaxies to probe secrets of the early Universe. Now, an international team of astronomers has identified bright hydrogen emission from a galaxy in an unexpectedly early time in the Universe’s history. The surprise finding is challenging researchers to explain how this light could have pierced the thick fog of neutral hydrogen that filled space at that time.
      View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb Sees Galaxy Mysteriously Clearing Fog of Early Universe
      The incredibly distant galaxy JADES-GS-z13-1, observed just 330 million years after the big bang, was initially discovered with deep imaging from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). Full image below. Credits:
      NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), A. Pagan (STScI), M. Zamani (ESA/Webb) Using the unique infrared sensitivity of NASA’s James Webb Space Telescope, researchers can examine ancient galaxies to probe secrets of the early universe. Now, an international team of astronomers has identified bright hydrogen emission from a galaxy in an unexpectedly early time in the universe’s history. The surprise finding is challenging researchers to explain how this light could have pierced the thick fog of neutral hydrogen that filled space at that time.
      The Webb telescope discovered the incredibly distant galaxy JADES-GS-z13-1, observed to exist just 330 million years after the big bang, in images taken by Webb’s NIRCam (Near-Infrared Camera) as part of the James Webb Space Telescope Advanced Deep Extragalactic Survey (JADES). Researchers used the galaxy’s brightness in different infrared filters to estimate its redshift, which measures a galaxy’s distance from Earth based on how its light has been stretched out during its journey through expanding space.
      Image A: JADES-GS-z13-1 in the GOODS-S field (NIRCam Image)
      The incredibly distant galaxy JADES-GS-z13-1, observed just 330 million years after the big bang, was initially discovered with deep imaging from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). Now, an international team of astronomers definitively has identified powerful hydrogen emission from this galaxy at an unexpectedly early period in the universe’s history. JADES-GS-z-13 has a redshift (z) of 13, which is an indication of its age and distance. NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), A. Pagan (STScI), M. Zamani (ESA/Webb) Image B: JADES-GS-z13-1 (NIRCam Close-Up)
      This image shows the galaxy JADES GS-z13-1 (the red dot at center), imaged with NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) as part of the JWST Advanced Deep Extragalactic Survey (JADES) program. These data from NIRCam allowed researchers to identify GS-z13-1 as an incredibly distant galaxy, and to put an estimate on its redshift value. Webb’s unique infrared sensitivity is necessary to observe galaxies at this extreme distance, whose light has been shifted into infrared wavelengths during its long journey across the cosmos. NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), M. Zamani (ESA/Webb) The NIRCam imaging yielded an initial redshift estimate of 12.9. Seeking to confirm its extreme redshift, an international team lead by Joris Witstok of the University of Cambridge in the United Kingdom, as well as the Cosmic Dawn Center and the University of Copenhagen in Denmark, then observed the galaxy using Webb’s Near-Infrared Spectrograph instrument.
      In the resulting spectrum, the redshift was confirmed to be 13.0. This equates to a galaxy seen just 330 million years after the big bang, a small fraction of the universe’s present age of 13.8 billion years old. But an unexpected feature stood out as well: one specific, distinctly bright wavelength of light, known as Lyman-alpha emission, radiated by hydrogen atoms. This emission was far stronger than astronomers thought possible at this early stage in the universe’s development.
      “The early universe was bathed in a thick fog of neutral hydrogen,” explained Roberto Maiolino, a team member from the University of Cambridge and University College London. “Most of this haze was lifted in a process called reionization, which was completed about one billion years after the big bang. GS-z13-1 is seen when the universe was only 330 million years old, yet it shows a surprisingly clear, telltale signature of Lyman-alpha emission that can only be seen once the surrounding fog has fully lifted. This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise.”
      Image C: JADES-GS-z13-1 Spectrum Graphic
      NASA’s James Webb Space Telescope has detected unexpected light from a distant galaxy. The galaxy JADES-GS-z13-1, observed just 330 million years after the big bang (corresponding to a redshift of z=13.05), shows bright emission from hydrogen known as Lyman-alpha emission. This is surprising because that emission should have been absorbed by a dense fog of neutral hydrogen that suffused the early universe. NASA, ESA, CSA, J. Witstok (University of Cambridge, University of Copenhagen), J. Olmsted (STScI) Before and during the era of reionization, the immense amounts of neutral hydrogen fog surrounding galaxies blocked any energetic ultraviolet light they emitted, much like the filtering effect of colored glass. Until enough stars had formed and were able to ionize the hydrogen gas, no such light — including Lyman-alpha emission — could escape from these fledgling galaxies to reach Earth. The confirmation of Lyman-alpha radiation from this galaxy, therefore, has great implications for our understanding of the early universe.
      “We really shouldn’t have found a galaxy like this, given our understanding of the way the universe has evolved,” said Kevin Hainline, a team member from the University of Arizona. “We could think of the early universe as shrouded with a thick fog that would make it exceedingly difficult to find even powerful lighthouses peeking through, yet here we see the beam of light from this galaxy piercing the veil. This fascinating emission line has huge ramifications for how and when the universe reionized.”
      The source of the Lyman-alpha radiation from this galaxy is not yet known, but it may include the first light from the earliest generation of stars to form in the universe.
      “The large bubble of ionized hydrogen surrounding this galaxy might have been created by a peculiar population of stars — much more massive, hotter, and more luminous than stars formed at later epochs, and possibly representative of the first generation of stars,” said Witstok. A powerful active galactic nucleus, driven by one of the first supermassive black holes, is another possibility identified by the team.
      This research was published Wednesday in the journal Nature.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Bethany Downer – Bethany.Downer@esawebb.org
      ESA/Webb, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more about cosmic history, the early universe, and cosmic reionization.
      Article: Learn about what Webb has revealed about galaxies through time.
      Video: How Webb reveals the first galaxies
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What Is a Galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Galaxies Stories



      Universe


      Share








      Details
      Last Updated Mar 25, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Science & Research The Universe View the full article
  • Check out these Videos

×
×
  • Create New...