Members Can Post Anonymously On This Site
Ariane 6 first flight planned for fourth quarter of 2023
-
Similar Topics
-
By NASA
Credit: NASA NASA is marking progress in strengthening the agency’s small business partnerships, supply chain resiliency, and domestic space manufacturing capabilities.
Under the agency’s enhanced Mentor-Protégé Program, NASA has announced the first Mentor-Protégé Agreement between L3Harris Technologies, a NASA large prime contractor, and Parametric Machining, Inc., a veteran-owned small business.
This agreement will help advance NASA’s mission by fostering innovation and reinforcing the agency’s supply chain. As NASA continues to advance the Artemis campaign, deep space exploration, and aeronautics research, partnerships like this are essential in securing a resilient and efficient supplier base.
“We are excited to facilitate the first agreement under the newly enhanced NASA Mentor-Protégé Program,” said Dwight Deneal, assistant administrator for NASA’s Office of Small Business Programs. “This agreement, and the many that will follow, promote domestic ingenuity and manufacturing and provide opportunities for small businesses to grow and thrive within NASA’s industrial base.”
Through Mentor-Protégé Agreements, large prime contractors serve as mentors, offering technical and business development assistance to small business protégés. This collaboration not only enhances protégés’ capabilities but also provides mentors with a stronger, more reliable subcontracting base, enabling them to fill their supply chain gaps. Additionally, protégés gain potential prime and subcontract opportunities, enhanced technical capabilities, technical training, and long-term business growth.
Relaunched in November 2024, the merit-based NASA Mentor-Protégé Program is designed to bolster small business development while strengthening NASA’s supply chain and industry base. By focusing on a targeted set of North American Industry Classification System codes, including research and development and aerospace manufacturing, NASA ensures that participating small businesses are well-positioned to contribute to long-term mission objectives.
The agreement between L3Harris Technologies and Parametric Machining, Inc. demonstrates the value of NASA’s revamped Mentor-Protégé Program. NASA is actively accepting new Mentor-Protégé Agreements and encourages large prime contractors and small businesses to explore the benefits of forming partnerships under the program. Participating in the Mentor-Protégé Program provides:
Enhanced manufacturing capabilities and subcontracting opportunities. Mentorship from experienced NASA prime contractors. Opportunities to advance competitiveness in government contracts. Access to technical assistance and business development support. A pathway for small businesses to integrate into NASA’s supply chain. L3Harris Technologies is a prime contractor at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, supporting the Geostationary Extended Observations Imager Instrument Implementation contract. NASA Goddard also will serve as the administering center for this agreement.
For more information on NASA’s Mentor-Protégé Program and how to participate, visit:
https://www.nasa.gov/osbp/mentor-protege-program
-end-
Share
Details
Last Updated Apr 17, 2025 ContactTiernan P. Doyletiernan.doyle@nasa.govLocationNASA Headquarters Related Terms
Office of Small Business Programs (OSBP) View the full article
-
By Space Force
The Space Force releases the Space Warfighting framework, outlining the service's vision for achieving and maintaining space superiority while ensuring the long-term safety and sustainability of the space domain.
View the full article
-
By Space Force
The Space Force released the Space Warfighting framework, outlining the service's vision for achieving and maintaining space superiority while ensuring the long-term safety and sustainability of the space domain.
View the full article
-
By NASA
Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are developing the first space-based quantum sensor for measuring gravity. Supported by NASA’s Earth Science Technology Office (ESTO), this mission will mark a first for quantum sensing and will pave the way for groundbreaking observations of everything from petroleum reserves to global supplies of fresh water.
A map of Earth’s gravity. Red indicates areas of the world that exert greater gravitational pull, while blue indicates areas that exert less. A science-grade quantum gravity gradiometer could one day make maps like this with unprecedented accuracy. Image Credit: NASA Earth’s gravitational field is dynamic, changing each day as geologic processes redistribute mass across our planet’s surface. The greater the mass, the greater the gravity.
You wouldn’t notice these subtle changes in gravity as you go about your day, but with sensitive tools called gravity gradiometers, scientists can map the nuances of Earth’s gravitational field and correlate them to subterranean features like aquifers and mineral deposits. These gravity maps are essential for navigation, resource management, and national security.
“We could determine the mass of the Himalayas using atoms,” said Jason Hyon, chief technologist for Earth Science at JPL and director of JPL’s Quantum Space Innovation Center. Hyon and colleagues laid out the concepts behind their Quantum Gravity Gradiometer Pathfinder (QGGPf) instrument in a recent paper in EPJ Quantum Technology.
Gravity gradiometers track how fast an object in one location falls compared to an object falling just a short distance away. The difference in acceleration between these two free-falling objects, also known as test masses, corresponds to differences in gravitational strength. Test masses fall faster where gravity is stronger.
QGGPf will use two clouds of ultra-cold rubidium atoms as test masses. Cooled to a temperature near absolute zero, the particles in these clouds behave like waves. The quantum gravity gradiometer will measure the difference in acceleration between these matter waves to locate gravitational anomalies.
Using clouds of ultra-cold atoms as test masses is ideal for ensuring that space-based gravity measurements remain accurate over long periods of time, explained Sheng-wey Chiow, an experimental physicist at JPL. “With atoms, I can guarantee that every measurement will be the same. We are less sensitive to environmental effects.”
Using atoms as test masses also makes it possible to measure gravity with a compact instrument aboard a single spacecraft. QGGPf will be around 0.3 cubic yards (0.25 cubic meters) in volume and weigh only about 275 pounds (125 kilograms), smaller and lighter than traditional space-based gravity instruments.
Quantum sensors also have the potential for increased sensitivity. By some estimates, a science-grade quantum gravity gradiometer instrument could be as much as ten times more sensitive at measuring gravity than classical sensors.
The main purpose of this technology validation mission, scheduled to launch near the end of the decade, will be to test a collection of novel technologies for manipulating interactions between light and matter at the atomic scale.
“No one has tried to fly one of these instruments yet,” said Ben Stray, a postdoctoral researcher at JPL. “We need to fly it so that we can figure out how well it will operate, and that will allow us to not only advance the quantum gravity gradiometer, but also quantum technology in general.”
This technology development project involves significant collaborations between NASA and small businesses. The team at JPL is working with AOSense and Infleqtion to advance the sensor head technology, while NASA’s Goddard Space Flight Center in Greenbelt, Maryland is working with Vector Atomic to advance the laser optical system.
Ultimately, the innovations achieved during this pathfinder mission could enhance our ability to study Earth, and our ability to understand distant planets and the role gravity plays in shaping the cosmos. “The QGGPf instrument will lead to planetary science applications and fundamental physics applications,” said Hyon.
To learn more about ESTO visit: https://esto.nasa.gov
Share
Details
Last Updated Apr 15, 2025 Editor NASA Science Editorial Team Contact Gage Taylor gage.taylor@nasa.gov Location NASA Goddard Space Flight Center Related Terms
Science-enabling Technology Earth Science Technology Office Technology Highlights Explore More
5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet
Article
4 weeks ago
4 min read Novel Metasurface Optical Element Could Shed New Light on Atmospheric Aerosols
Article
1 month ago
5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging
Article
2 months ago
View the full article
-
By NASA
Nick Kopp is a Dragon flight lead in the Transportation Integration Office at Johnson Space Center in Houston. He is currently leading NASA’s efforts to prepare, launch, and return the agency’s 32nd SpaceX commercial resupply services mission. He works directly with SpaceX and collaborates with NASA’s many internal, external, and international partners to ensure the success of this and other cargo missions to the International Space Station.
Read on to learn about his career with NASA and more!
Nick Kopp’s official portrait.NASA/Bill Stafford The time and effort spent building, maintaining, and conducting science on the International Space Station is spent by people in our community and communities around the world to further humanity's collective understanding of the universe around us.
Nick Kopp
Transportation Integration Office Flight Lead
Where are you from?
I am from Cleveland, Ohio.
Tell us about your role at NASA.
I work directly with SpaceX to ensure the Dragon cargo spacecraft meets NASA’s requirements to visit the space station. I also collaborate with NASA’s various partners who are safely flying science investigations and other cargo to and from the space station. For the upcoming flight, I’ve worked extensively with SpaceX to prepare to return the Dragon cargo spacecraft off the coast of California.
How would you describe your job to family or friends who may not be familiar with NASA?
I’m responsible for getting stuff to and from the International Space Station safely.
How long have you been working for NASA?
I have been working for NASA for about 15 years at both Marshall Space Flight Center in Alabama and Johnson Space Center in Texas.
What advice would you give to young individuals aspiring to work in the space industry or at NASA?
It takes so many different people with all kinds of different skills working together to make missions happen. I would suggest looking at NASA’s websites to find the skill or task that makes you want to learn more and then focusing your energy into that skill. Surround yourself with people with similar goals. Connect with people in the industry and ask them questions. You are in control of your destiny!
Nick Kopp in front of the International Space Station Payload Operations Center at the agency’s Marshall Space Flight Center in Huntsville, Alabama. What was your path to NASA?
I’ve wanted to work at NASA since I was a kid and my grandfather showed me the Moon through his home-built telescope. I studied aerospace engineering at the University of Illinois, where I joined Students for the Exploration and Development of Space and attended a conference at NASA’s Goddard Space Flight Center in Maryland. I met some folks from the Payload Operations Integration Center and learned of the awesome space station science operations at Marshall. I was lucky enough to be chosen for a contractor job working directly with astronauts on the space station to conduct science experiments!
Is there someone in the space, aerospace, or science industry that has motivated or inspired you to work for the space program? Or someone you discovered while working for NASA who inspires you?
After working with him from the ground when he was aboard the space station, I was lucky enough to spend many overnight shifts getting to know NASA astronaut and Flight Director TJ Creamer. TJ’s path to NASA and his servant leadership have left an ongoing legacy for people at the agency. His general attitude, extreme competence, friendly demeanor, and genuine care for people around him continue to inspire me every day to become a great leader.
What is your favorite NASA memory?
My favorite NASA memory is being selected as a payload operations director on the International Space Station Payload Operations and Integration Center flight control team. I looked up to those in this position for 10 years and did everything I could to gather the skills and knowledge I needed to take on the role. I became responsible for the minute-to-minute operations of astronauts conducting science investigations on the space station. I vividly remember the joy I felt learning of the news of my assignment, taking my first shift, my first conversation with an astronaut in space, and the bittersweet decision to leave and continue my career goals at NASA in a different role.
Nick Kopp, right, behind a console in the International Space Station Payload Operations Integration Center at the agency’s Marshall Space Flight Center. What do you love sharing about station? What’s important to get across to general audiences to help them understand the benefits to life on Earth?
Although it takes place off the planet, research on the space station is conducted for people on Earth. The time and effort spent building, maintaining, and conducting science on the International Space Station is spent by people in our community and communities around the world to further humanity’s collective understanding of the universe around us. When we understand more about science, we can be more successful. So many people around the planet have had life-changing benefits from experiments that can only be done by people conducting research in microgravity, above the atmosphere, where you can view most of Earth.
If you could have dinner with any astronaut, past or present, who would it be?
I would have dinner with anyone from the Apollo 13 crew. I’d love to learn how they felt that NASA’s culture drove the outcome of that mission.
Do you have a favorite space-related memory or moment that stands out to you?
While working a night shift at the operations center in Huntsville, Alabama, we were monitoring payloads returning to Earth on a Dragon cargo spacecraft. We took a quick break outside the control center to watch as the spacecraft re-entered Earth’s atmosphere above us on its way to splash down off the coast of Florida. It was a clear night. As the spacecraft flew overhead, we saw the ablative heat shield create a shimmering trail of fire and sparkles that stretched across the whole night sky. It looked as though Tinker Bell just flew over us!
What are some of the key projects you’ve worked on during your time at NASA? What have been your favorite?
Some of my favorite projects I’ve worked on include:
Serving as the International Space Station Program’s representative as flight lead for NASA’s SpaceX Crew-8 mission Troubleshooting unexpected results when conducting science on the space station Writing instructions for astronauts filming a virtual reality documentary on the space station Assessing design changes on the Space Launch System rocket’s core stage Managing and training a team of flight controllers Helping NASA move Dragon spacecraft returns from Florida to California Nick Kopp enjoys sailing on his days off. What are your hobbies/things you enjoy outside of work?
I love playing board games with my wife, sailing, flying, traveling around the world, and learning about leadership and project management theory.
Day launch or night launch?
The Crew-8 night launch, specifically, where the Falcon 9 booster landed just above me!
Favorite space movie?
Spaceballs
NASA “worm” or “meatball” logo?
Meatball
Every day, we’re conducting exciting research aboard our orbiting laboratory that will help us explore further into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It’s a curated hub of space station research digital media from Johnson and other centers and space agencies.
Sign up for our weekly email newsletter to get the updates delivered directly to you.
Follow updates on social media at @ISS_Research on Twitter, and on the space station accounts on Facebook and Instagram.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.