Jump to content

Press Briefing on Ariane 6 progress and preparation


Recommended Posts

Press_Briefing_on_Ariane_6_progress_and_ Video: 00:56:31

Press briefing on Ariane 6 progress at ESA Bertrand HQ, 19 October 2022: (l-r at front) Stéphane Israël (Arianespace Chief Executive), André-Hubert Roussel (ArianeGroup Chief Executive), Philippe Baptiste (CNES Chairman and Chief Executive), Joseph Aschbacher (ESA Director General), Daniel Neuenschwander (ESA Director of Space Transportation Systems)

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Stennis Space Center near Bay St. Louis, Mississippi, achieved a key milestone this week for testing a new SLS (Space Launch System) rocket stage to fly on future Artemis missions to the Moon and beyond.
      Over a two-week period beginning Oct. 10, crews completed a safe lift and installation of the interstage simulator component needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The component will function like the SLS interstage section that helps protect the upper stage during Artemis launches.
      “NASA Stennis is at the front end of the critical path for future space exploration,” said Barry Robinson, project manager for exploration upper stage Green Run testing on the Thad Cochran Test Stand. “Installing the interstage simulator is a significant step in our preparation to ensure the new, more powerful upper stage is ready to safely fly on future Artemis missions.”
      Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin The EUS unit, built by Boeing at NASA’s Michoud Assembly Facility in New Orleans, which will be the upper stage for the evolved Block 1B version of SLS and will enable NASA to launch its most ambitious deep space missions. The new stage will replace the current interim cryogenic propulsion stage on the Block 1 version of SLS, which features a single engine and is capable of lifting 27 tons of crew and cargo to lunar orbit.
      The new exploration upper stage will be powered by four RL10 engines, manufactured by SLS engines contractor L3Harris. It will increase payload capacity by 40%, enabling NASA to send 38 tons of cargo with a crew to the Moon or 42 tons of cargo without a crew.
      In the first two weeks of October 2024, crews at NASA’s Stennis Space Center completed a successful lift and installation of an interstage simulator unit on the B-2 side of the Thad Cochran test Stand. The interstage simulator is a key component for future testing of NASA’s new exploration upper stage that will fly on Artemis missions to the Moon and beyond. Before the first flight of the exploration upper stage on the Artemis IV mission, the stage will undergo a series of Green Run tests of its integrated systems at NASA Stennis. The test series will culminate with a hot fire of the stage’s four RL10 engines, just as during an actual mission.
      The simulator component installed on the Thad Cochran Test Stand (B-2) at NASA Stennis weighs 103 tons and measures 31 feet in diameter and 33 feet tall. It will function like the SLS interstage section to protect EUS electrical and propulsion systems during Green Run testing. The top portion of the simulator also will serve as a thrust takeout system to absorb the thrust of the EUS hot fire and transfer it back to the test stand. The four-engine EUS provides more than 97,000 pounds of thrust.
      Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin Teams at NASA’s Stennis Space Center complete a safe lift and install of an interstage simulator unit needed for future testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. The lift and install, completed over a two-week period that began Oct. 10, marks a milestone for testing the new SLS (Space Launch System) rocket stage that will fly on future Artemis missions to the Moon and beyond. The EUS will undergo a series of Green Run tests of its integrated systems prior to its first flight. During testing, the interstage simulator component will function like the SLS interstage section that helps protect the upper stage during Artemis launches. NOTE: Right click on photo to open full image in new tab.NASA/Danny Nowlin NASA Stennis crews previously lifted the interstage simulator to measure and align it relative to the test stand. It is now outfitted with all piping, tubing, and electrical systems necessary to support future Green Run testing.
      Installation onto the test stand enables NASA Stennis crews to begin fabricating the mechanical and electrical systems connecting the facility to the simulator. As fabrication of the systems are completed, crews will conduct activation flows to ensure the test stand can operate to meet test requirements.
      Through Artemis, NASA will establish the foundation for long-term scientific exploration at the Moon; land the first woman, first person of color and first international partner astronaut on the lunar surface; and prepare for human expeditions to Mars for the benefit of all.
      For information about NASA’s Stennis Space Center, visit:
      https://www.nasa.gov/stennis
      Explore More
      4 min read Lagniappe for October 2024
      Article 3 weeks ago 4 min read NASA Stennis Completes Key Test Complex Water System Upgrade
      Article 4 weeks ago 7 min read Lagniappe for September 2024
      Article 2 months ago Share
      Details
      Last Updated Oct 25, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Stennis Test Facility and Support Infrastructure Keep Exploring Discover More Topics From NASA Stennis
      Multi-User Test Complex
      Propulsion Test Engineering
      NASA Stennis Front Door
      NASA Stennis Media Resources
      View the full article
    • By NASA
      Representatives of the Artemis Accords signatories, including NASA leadership, met Oct. 14, 2024, for a principals meeting in Milan, during the International Astronautical Congress. With 42 of 45 signatories participating in the event, established and emerging spacefaring nations from every region of the world were represented. Credit: UAE Space Agency A record number of Artemis Accords signatories, including the United States, gathered at the International Astronautical Congress (IAC), the world’s largest global space conference taking place in Milan this week, furthering discussions on the safe and responsible use of space for the benefit of all.
      During the space conference, top space agency leaders and other government representatives met Oct. 14 to continue advancing implementation of the Artemis Accords, marking the most comprehensive engagement yet among Accords signatories.
      “As we send humans further into the solar system, collaboration and shared responsibility among nations are more critical than ever,” said NASA Deputy Administrator Pam Melroy. “The Artemis Accords provide a common sense set of principles to guide our work together, and our recent efforts to further their implementation is fostering a remarkable environment of trust and cooperation where all nations can contribute to and benefit from these endeavors.”
      The high-level meeting was co-chaired by NASA, CSA (Canadian Space Agency) and Italian Space Agency. With 42 of 45 signatories participating, established and emerging spacefaring nations from every region of the world were represented to help create a foundation for future space exploration for the Artemis Generation.
      Leaders from each nation reflected on how the group can contribute to and advance existing multilateral forums, further technical discussions to inform policy deliberations, and promote and encourage the participation of emerging space nations including the adoption of the Artemis Accords by additional countries. They agreed on recommendations on non-interference, interoperability, release of scientific data, long-term sustainability guidelines, and registration to advance implementing the Artemis Accords. A method of operations was established for the ongoing work of the signatories.
      “Promoting the participation of emerging space nations and encouraging the adoption of the Artemis Accords is crucial for the entire space,” said Teodoro Valente, president of the Italian Space Agency. “This is a matter of strategic importance in order to ensure the active and meaningful engagement of emerging space nations, both those already part of the Artemis Accords, and those poised to join in the future.”
      The conversation in Milan built on previous work during a workshop in Montreal in May 2024, where participantsdelved into the topics such as non-interference and interoperability.
      “Canada is pleased to be part of a growing group of countries committed to the safety and sustainability of outer space activities,” said Lisa Campbell, CSA president. “We are strong supporters of the Artemis Accords and are pleased to have hosted the most recent workshop that advanced work on key aspects of the Artemis Accords. We look forward to continuing this important work in the coming months and years.”
      In October 2023, signatories agreed on an initial set of mission data parameters to advance transparency and non-interference in conducting space activities. The data parameters identify relevant information about planned lunar surface missions including expected launch dates, the general nature of activities, and landing locations. Recent progress also included work on a database to house them. Several space agencies, including NASA, have submitted mission data to the United Nations Office of Outer Space Affairs for dissemination.
      Potential focus areas for the next year include further advancing sustainability, including debris management for both lunar orbit and the surface of the Moon.
      In 2020, the United States and seven other nations were the first to sign the Artemis Accords, which identified a set of principles promoting the beneficial use of space for humanity. The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data. 
      The commitments of the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space.
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Amber Jacobson / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Oct 18, 2024 LocationNASA Headquarters Related Terms
      artemis accords Opportunities For International Participants to Get Involved Science of Space Exploration View the full article
    • By NASA
      NASA’s Solar Dynamics Observatory captured this image of an X9.0 solar flare – as seen in the bright flash in the center – on Oct. 3, 2024. This is the largest flare of Solar Cycle 25 to date.Credit: NASA NASA and the National Oceanic and Atmospheric Administration (NOAA) will discuss the Sun’s activity and the progression of Solar Cycle 25 during a media teleconference at 2 p.m. EDT, Tuesday, Oct. 15. Tracking the solar cycle is a key part of better understanding the Sun and mitigating its impacts on technology and infrastructure as humanity explores farther into space.
      During the teleconference, experts from NASA, NOAA, and the international Solar Cycle 25 Prediction Panel, which is co-sponsored by both agencies, will discuss recent solar cycle progress and the forecast for the rest of this cycle.
      Audio of the teleconference will stream live on the agency’s website at:
      https://www.nasa.gov/live
      Participants include:
      Jamie Favors, director, NASA’s Space Weather Program Kelly Korreck, program scientist, NASA’s Heliophysics Division Elsayed Talaat, director, Office of Space Weather Observations, NOAA Bill Murtagh, program coordinator, NOAA’s Space Weather Prediction Center Lisa Upton, co-chair, Solar Cycle 25 Prediction Panel To participate in the media teleconference, media must RSVP no later than 12 p.m. on Oct. 15, to Abbey Interrante at: abbey.a.interrante@nasa.gov.  
      The Sun goes through regular cycles of activity lasting approximately 11 years. During the most active part of the cycle, known as solar maximum, the Sun can unleash immense explosions of light, energy, and solar radiation, all of which create conditions known as space weather. Space weather can affect satellites and astronauts in space, as well as communications systems such as radio and GPS — and power grids on Earth. When the Sun is most active, space weather events become more frequent. Solar activity, such as the storm in May 2024, has sparked displays of aurora and led to impacts on satellites and infrastructure in recent months.
      NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth. The NOAA Space Weather Prediction Center is the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts.
      For more information on how NASA studies the Sun and space weather, visit:  
      https://www.nasa.gov/sun
      -end-
      Karen Fox
      Headquarters, Washington
      202-358-1600
      karen.fox@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Erica Grow Cei
      NOAA’s National Weather Service, College Park, Md.
      202-853-6088
      erica.grow.cei@noaa.gov
      Share
      Details
      Last Updated Oct 08, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      The Sun Heliophysics Space Weather View the full article
    • By European Space Agency
      Video: 00:52:00 The Copernicus Sentinel-2C satellite is set for liftoff on 4 September on the last Vega rocket from Europe’s Spaceport in Kourou, French Guiana.
      This recording is of a media briefing held on 29 August 2024 to offer journalists the possibility to learn more about the Sentinel-2 mission and the last flight of Vega, Europe’s nimble rocket specialising in launching small scientific and Earth observation spacecraft such as to sun-synchronous polar orbits, following the Sun.
      The Sentinel-2 mission is based on a constellation of two identical satellites, Sentinel-2A and Sentinel-2B, flying in the same orbit but 180° apart to optimise coverage and revisit time. Once in orbit, Sentinel-2C will replace the Sentinel-2A unit – prolonging the life of the Sentinel-2 mission – ensuring a continuous supply of data for Copernicus, the Earth observation component of the EU Space Programme.
      Data collected from Sentinel-2 are used for a wide range of applications, including precision farming, water quality monitoring, natural disaster management and methane emission detection.
       
      Participants at the media briefing were
       
      Simonetta Cheli, Director of Earth Observation Programmes, ESA 
      Toni Tolker-Nielsen, Director of Space Transportation, ESA  Stéphane Israël, CEO, Arianespace  Mauro Facchini, Head of Unit for Earth Observation, European Commission     View the full article
  • Check out these Videos

×
×
  • Create New...