Members Can Post Anonymously On This Site
30 000 near-Earth asteroids discovered and rising
-
Similar Topics
-
By NASA
This map of Earth in 2024 shows global surface temperature anomalies, or how much warmer or cooler each region of the planet was compared to the average from 1951 to 1980. Normal temperatures are shown in white, higher-than-normal temperatures in red and orange, and lower-than-normal temperatures in blue. An animated version of this map shows global temperature anomalies changing over time, dating back to 1880. Download this visualization from NASA Goddard’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5450. Credit: NASA’s Scientific Visualization Studio Earth’s average surface temperature in 2024 was the warmest on record, according to an analysis led by NASA scientists.
Global temperatures in 2024 were 2.30 degrees Fahrenheit (1.28 degrees Celsius) above the agency’s 20th-century baseline (1951-1980), which tops the record set in 2023. The new record comes after 15 consecutive months (June 2023 through August 2024) of monthly temperature records — an unprecedented heat streak.
“Once again, the temperature record has been shattered — 2024 was the hottest year since record keeping began in 1880,” said NASA Administrator Bill Nelson. “Between record breaking temperatures and wildfires currently threatening our centers and workforce in California, it has never been more important to understand our changing planet.”
NASA scientists further estimate Earth in 2024 was about 2.65 degrees Fahrenheit (1.47 degrees Celsius) warmer than the mid-19th century average (1850-1900). For more than half of 2024, average temperatures were more than 1.5 degrees Celsius above the baseline, and the annual average, with mathematical uncertainties, may have exceeded the level for the first time.
“The Paris Agreement on climate change sets forth efforts to remain below 1.5 degrees Celsius over the long term. To put that in perspective, temperatures during the warm periods on Earth three million years ago — when sea levels were dozens of feet higher than today — were only around 3 degrees Celsius warmer than pre-industrial levels,” said Gavin Schmidt, director of NASA’s Goddard Institute for Space Studies (GISS) in New York. “We are halfway to Pliocene-level warmth in just 150 years.”
Scientists have concluded the warming trend of recent decades is driven by heat-trapping carbon dioxide, methane, and other greenhouse gases. In 2022 and 2023, Earth saw record increases in carbon dioxide emissions from fossil fuels, according to a recent international analysis. The concentration of carbon dioxide in the atmosphere has increased from pre-industrial levels in the 18th century of approximately 278 parts per million to about 420 parts per million today.
NASA and other federal agencies regularly collect data on greenhouse gas concentrations and emissions. These data are available at the U.S. Greenhouse Gas Center, a multi-agency effort that consolidates information from observations and models, with a goal of providing decision-makers with one location for data and analysis.
Exceptional heat trends
The temperatures of individual years can be influenced by natural climate fluctuations such as El Niño and La Niña, which alternately warm and cool the tropical Pacific Ocean. The strong El Niño that began in fall 2023 helped nudge global temperatures above previous records.
The heat surge that began in 2023 continued to exceed expectations in 2024, Schmidt said, even though El Niño abated. Researchers are working to identify contributing factors, including possible climate impacts of the January 2022 Tonga volcanic eruption and reductions in pollution, which may change cloud cover and how solar energy is reflected back into space.
“Not every year is going to break records, but the long-term trend is clear,” Schmidt said. “We’re already seeing the impact in extreme rainfall, heat waves, and increased flood risk, which are going to keep getting worse as long as emissions continue.”
Seeing changes locally
NASA assembles its temperature record using surface air temperature data collected from tens of thousands of meteorological stations, as well as sea surface temperature data acquired by ship- and buoy-based instruments. This data is analyzed using methods that account for the varied spacing of temperature stations around the globe and for urban heating effects that could skew the calculations.
A new assessment published earlier this year by scientists at the Colorado School of Mines, National Science Foundation, the National Atmospheric and Oceanic Administration (NOAA), and NASA further increases confidence in the agency’s global and regional temperature data.
“When changes happen in the climate, you see it first in the global mean, then you see it at the continental scale and then at the regional scale. Now, we’re seeing it at the local level,” Schmidt said. “The changes occurring in people’s everyday weather experiences have become abundantly clear.”
Independent analyses by NOAA, Berkeley Earth, the Hadley Centre (part of the United Kingdom’s weather forecasting Met Office) and Copernicus Climate Services in Europe have also concluded that the global surface temperatures for 2024 were the highest since modern record-keeping began. These scientists use much of the same temperature data in their analyses but use different methodologies and models. Each shows the same ongoing warming trend.
NASA’s full dataset of global surface temperatures, as well as details of how NASA scientists conducted the analysis, are publicly available from GISS, a NASA laboratory managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
For more information about NASA’s Earth science programs, visit:
https://www.nasa.gov/earth
-end-
Liz Vlock
Headquarters, Washington
202-358-1600
elizabeth.a.vlock@nasa.gov
Peter Jacobs
Goddard Space Flight Center, Greenbelt, Md.
301-286-0535
peter.jacobs@nasa.gov
View the full article
-
By NASA
Illustration of the main asteroid belt, orbiting the Sun between Mars and JupiterNASA NASA’s powerful James Webb Space Telescope includes asteroids on its list of objects studied and secrets revealed.
A team led by researchers at the Massachusetts Institute of Technology (MIT) in Cambridge repurposed Webb’s observations of a distant star to reveal a population of small asteroids — smaller than astronomers had ever detected orbiting the Sun in the main asteroid belt between Mars and Jupiter.
The 138 new asteroids range from the size of a bus to the size of a stadium — a size range in the main belt that has not been observable with ground-based telescopes. Knowing how many main belt asteroids are in different size ranges can tell us something about how asteroids have been changed over time by collisions. That process is related to how some of them have escaped the main belt over the solar system’s history, and even how meteorites end up on Earth.
“We now understand more about how small objects in the asteroid belt are formed and how many there could be,” said Tom Greene, an astrophysicist at NASA’s Ames Research Center in California’s Silicon Valley and co-author on the paper presenting the results. “Asteroids this size likely formed from collisions between larger ones in the main belt and are likely to drift towards the vicinity of Earth and the Sun.”
Insights from this research could inform the work of the Asteroid Threat Assessment Project at Ames. ATAP works across disciplines to support NASA’s Planetary Defense Coordination Office by studying what would happen in the case of an Earth impact and modeling the associated risks.
“It’s exciting that Webb’s capabilities can be used to glean insights into asteroids,” said Jessie Dotson, an astrophysicist at Ames and member of ATAP. “Understanding the sizes, numbers, and evolutionary history of smaller main belt asteroids provides important background about the near-Earth asteroids we study for planetary defense.”
Illustration of the James Webb Space TelescopeNASA The team that made the asteroid detections, led by research scientist Artem Burdanov and professor of planetary science Julien de Wit, both of MIT, developed a method to analyze existing Webb images for the presence of asteroids that may have been inadvertently “caught on film” as they passed in front of the telescope. Using the new image processing technique, they studied more than 10,000 images of the star TRAPPIST-1, originally taken to search for atmospheres around planets orbiting the star, in the search for life beyond Earth.
Asteroids shine more brightly in infrared light, the wavelength Webb is tuned to detect, than in visible light, helping reveal the population of main belt asteroids that had gone unnoticed until now. NASA will also take advantage of that infrared glow with an upcoming mission, the Near-Earth Object (NEO) Surveyor. NEO Surveyor is the first space telescope specifically designed to hunt for near-Earth asteroids and comets that may be potential hazards to Earth.
The paper presenting this research, “Detections of decameter main-belt asteroids with JWST,” was published Dec. 9 in Nature.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
For news media:
Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
View the full article
-
By NASA
Michelle Dominguez proudly displays her award at the Women of Color STEM Conference in Detroit, Michigan, October 2024.NASA Dorcas Kaweesa holding her award at the Women of Color STEM Conference in Detroit, Michigan, October 2024. NASA In October 2024, Michelle Dominguez and Dorcas Kaweesa from the Ames Aeromechanics Office were each awarded as a “Technology Rising Star” at the Women of Color STEM Conference in Detroit, Michigan. Rising Star awards are for “young women, with 21 years or less in the workforce, who are helping to shape technology for the future.” Ms. Dominguez is a Mechanical Systems Engineer working on rotorcraft design for vertical-lift vehicles such as air taxis and Mars helicopters. Dr. Kaweesa is a Structural Analysis Engineer and Deputy Manager for planetary rotorcraft initiatives including Mars Exploration Program and Mars Sample Return. More information on this award is at https://intouch.ccgmag.com/mpage/woc-stem-conference-awardees .
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s IXPE (Imaging X-ray Polarimetry Explorer) has helped astronomers better understand the shapes of structures essential to a black hole – specifically, the disk of material swirling around it, and the shifting plasma region called the corona.
The stellar-mass black hole, part of the binary system Swift J1727.8-1613, was discovered in the summer of 2023 during an unusual brightening event that briefly caused it to outshine nearly all other X-ray sources. It is the first of its kind to be observed by IXPE as it goes through the start, peak, and conclusion of an X-ray outburst like this.
This illustration shows NASA’s Imaging X-ray Polarimetry Explorer (IXPE) spacecraft, at lower left, observing the newly discovered binary system Swift J1727.8-1613 from a distance. At the center is a black hole surrounded by an accretion disk, shown in yellow and orange, and a hot, shifting corona, shown in blue. The black hole is siphoning off gas from its companion star, seen behind the black hole as an orange disk. Jets of fast-moving, superheated particles stream from both poles of the black hole. Author: Marie Novotná Swift J1727 is the subject of a series of new studies published in The Astrophysical Journal and Astronomy & Astrophysics. Scientists say the findings provide new insight into the behavior and evolution of black hole X-ray binary systems.
“This outburst evolved incredibly quickly,” said astrophysicist Alexandra Veledina, a permanent researcher at the University of Turku, Finland. “From our first detection of the outburst, it took Swift J1727 just days to peak. By then, IXPE and numerous other telescopes and instruments were already collecting data. It was exhilarating to observe the outburst all the way through its return to inactivity.”
Until late 2023, Swift J1727 briefly remained brighter than the Crab Nebula, the standard X-ray “candle” used to provide a baseline for units of X-ray brightness. Such outbursts are not unusual among binary star systems, but rarely do they occur so brightly and so close to home – just 8,800 light years from Earth. The binary system was named in honor of the Swift Gamma-ray Burst Mission which initially detected the outburst with its Burst Alert Telescope on Aug. 24, 2023, resulting in the discovery of the black hole.
X-ray binary systems typically include two close-proximity stars at different stages of their lifecycle. When the elder star runs out of fuel, it explodes in a supernova, leaving behind a neutron star, white dwarf, or black hole. In the case of Swift J1727, the powerful gravity of the resulting black hole stripped material from its companion star, heating the material to more than 1.8 million degrees Fahrenheit and producing a vast outpouring of X-rays. This matter formed an accretion disk and can include a superheated corona. At the poles of the black hole, matter also can escape from the binary system in the form of relativistic jets.
IXPE, which has helped NASA and researchers study all these phenomena, specializes in X-ray polarization, the characteristic of light that helps map the shape and structure of such ultra-powerful energy sources, illuminating their inner workings even when they’re too distant for us to see directly.
Because light itself can’t escape their gravity, we can’t see black holes. We can only observe what is happening around them and draw conclusions about the mechanisms and processes that occur there. IXPE is crucial to that work.
/wp-content/plugins/nasa-blocks/assets/images/article-templates/anne-mcclain.jpg Alexandra Veledina
NASA Astrophysicist
“Because light itself can’t escape their gravity, we can’t see black holes,” Veledina said. “We can only observe what is happening around them and draw conclusions about the mechanisms and processes that occur there. IXPE is crucial to that work.”
Two of the IXPE-based studies of Swift J1727, led by Veledina and Adam Ingram, a researcher at Newcastle University in Newcastle-upon-Tyne, England, focused on the first phases of the outburst. During the brief period of months when the source became exceptionally bright, the corona was the main source of observed X-ray radiation.
“IXPE documented polarization of X-ray radiation traveling along the estimated direction of the black hole jet, hence the hot plasma is extended in the accretion disk plane,” Veledina said. “Similar findings were reported in the persistent black hole binary Cygnus X-1, so this finding helps verify that the geometry is the same among short-lived eruptive systems.”
The team further monitored how polarization values changed during Swift J1727’s peak outburst. Those conclusions matched findings simultaneously obtained during studies of other energy bands of electromagnetic radiation.
A third and a fourth study, led by researchers Jiří Svoboda and Jakub Podgorný, both of the Czech Academy of Sciences in Prague, focused on X-ray polarization at the second part of the Swift J1727’s outburst and its return to a highly energetic state several months later. For Podgorný’s previous efforts using IXPE data and black hole simulations, he recently was awarded the Czech Republic’s top national prize for a Ph.D. thesis in the natural sciences.
The polarization data indicated that the geometry of the corona did not change significantly between the beginning and the end of the outburst, even though the system evolved in the meantime and the X-ray brightness dropped dramatically in the later energetic state.
The results represent a significant step forward in our understanding of the changing shapes and structures of accretion disk, corona, and related structures at black holes in general. The study also demonstrates IXPE’s value as a tool for determining how all these elements of the system are connected, as well as its potential to collaborate with other observatories to monitor sudden, dramatic changes in the cosmos.
“Further observations of matter near black holes in binary systems are needed, but the successful first observing campaign of Swift J1727.8–1613 in different states is the best start of a new chapter we could imagine,” said Michal Dovčiak, co-author of the series of papers and leader of the IXPE working group on stellar-mass black holes, who also conducts research at the Czech Academy of Sciences.
More about IXPE
IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. Ball Aerospace, headquartered in Broomfield, Colorado, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.
Learn more about IXPE’s ongoing mission here:
https://www.nasa.gov/ixpe
Elizabeth Landau
NASA Headquarters
elizabeth.r.landau@nasa.gov
202-358-0845
Lane Figueroa
NASA’s Marshall Space Flight Center
256-544-0034
lane.e.figueroa@nasa.gov
Share
Details
Last Updated Dec 06, 2024 Related Terms
IXPE (Imaging X-ray Polarimetry Explorer) Marshall Science Research & Projects Marshall Space Flight Center Explore More
3 min read NASA, USAID Launch SERVIR Central American Hub
Article 7 mins ago 4 min read NASA AI, Open Science Advance Disaster Research and Recovery
By Lauren Perkins When you think of NASA, disasters such as hurricanes may not be…
Article 1 week ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Video: 00:01:20 Approximately 41 000 years ago, Earth’s magnetic field briefly reversed during what is known as the Laschamp event. During this time, Earth’s magnetic field weakened significantly—dropping to a minimum of 5% of its current strength—which allowed more cosmic rays to reach Earth’s atmosphere.
Scientists at the Technical University of Denmark and the German Research Centre for Geosciences used data from ESA’s Swarm mission, along with other sources, to create a sounded visualisation of the Laschamp event. They mapped the movement of Earth’s magnetic field lines during the event and created a stereo sound version which is what you can hear in the video.
The soundscape was made using recordings of natural noises like wood creaking and rocks falling, blending them into familiar and strange, almost alien-like, sounds. The process of transforming the sounds with data is similar to composing music from a score.
Data from ESA’s Swarm constellation are being used to better understand how Earth’s magnetic field is generated. The satellites measure magnetic signals not only from the core, but also from the mantle, crust, oceans and up to the ionosphere and magnetosphere. These data are crucial for studying phenomena such as geomagnetic reversals and Earth’s internal dynamics.
The sound of Earth’s magnetic field, the first version of the magnetic field sonification produced with Swarm data, was originally played through a 32-speaker system set up in a public square in Copenhagen, with each speaker representing changes in the magnetic field at different places around the world over the past 100 000 years.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.