Members Can Post Anonymously On This Site
LIVE: SpaceX / NASA Crew-5 Mission | Launch
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA/Quincy Eggert Upside down can be right side up. That’s what NASA researchers determined for tests of an efficient wing concept that could be part of the agency’s answer to making future aircraft sustainable.
Research from NASA’s Advanced Air Transport Technology project involving a 10-foot model could help NASA engineers validate the concept of the Transonic Truss-Braced Wing (TTBW), an aircraft using long, thin wings stabilized by diagonal struts. The TTBW concept’s efficient wings add lift and could result in reduced fuel use and emissions for future commercial single-aisle aircraft. A team at the Flight Loads Laboratory at NASA’s Armstrong Flight Research Center in Edwards, California, are using the model, called the Mock Truss-Braced Wing, to verify the concept and their testing methods.
The model wing and the strut have instruments installed to measure strain, then attached to a rigid vertical test frame. Wire hanging from an overhead portion of the frame stabilizes the model wing for tests. For these tests, researchers chose to mount the 10-foot-long aluminum wing upside down, adding weights to apply stress. The upside-down orientation allows gravity to simulate the lift a wing would experience in flight.
Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. A view from above shows the test structure, the wing, and the strut. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman “A strut reduces the structure needed on the main wing, and the result is less structural weight, and a thinner wing,” said Frank Pena, NASA mock wing test director. “In this case, the test measured the reaction forces at the base of the main wing and at the base of the strut. There is a certain amount of load sharing between the wing and the strut, and we are trying to measure how much of the load stays in the main wing and how much is transferred to the strut.”
To collect those measurements, the team added weights one at a time to the wing and the truss. In another series of tests, engineers tapped the wing structure with an instrumented hammer in key locations, monitoring the results with sensors.
“The structure has natural frequencies it wants to vibrate at depending on its stiffness and mass,” said Ben Park, NASA mock wing ground vibration test director. “Understanding the wing’s frequencies, where they are and how they respond, are key to being able to predict how the wing will respond in flight.”
Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Charlie Eloff, left, and Lucas Oramas add weight to the test wing to apply stress used to determine its limits. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Adding weights to the wingtip, tapping the structure with a hammer, and collecting the vibration response is an unusual testing method because it adds complexity, Park said. The process is worth it, he said, if it provides the data engineers are seeking. The tests are also unique because NASA Armstrong designed, built, and assembled the wing, strut, and test fixture, and conducted the tests.
With the successful loads calibration and vibration tests nearly complete on the 10-foot wing, the NASA Armstrong Flight Loads Laboratory team is working on designing a system and hardware for testing a 15-foot model made from graphite-epoxy composite. The Advanced Air Transport Technology TTBW team at NASA’s Langley Research Center in Hampton, Virginia, is designing and constructing the model, which is called the Structural Wing Experiment Evaluating Truss-bracing.
The larger wing model will be built with a structural design that will more closely resembles what could potentially fly on a future commercial aircraft. The goals of these tests are to calibrate predictions with measured strain data and learn how to test novel aircraft structures such as the TTBW concept.
NASA’s Advanced Air Transport Technology project falls under NASA’s Advanced Air Vehicles Program, which evaluates and develops technologies for new aircraft systems and explores promising air travel concepts.
Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Frank Pena, test director, checks the mock wing. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Samson Truong, from left, and Ben Park, NASA mock wing ground vibration test director, prepare for a vibration test. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Ben Park, NASA mock wing ground vibration test director, taps the wing structure with an instrumented hammer in key locations and sensors monitor the results. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Share
Details
Last Updated Dec 04, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Advanced Air Transport Technology Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Flight Innovation Green Aviation Tech Sustainable Aviation Explore More
4 min read NASA’s C-20A Studies Extreme Weather Events
Article 6 hours ago 3 min read NASA Experts Share Inspiring Stories of Perseverance to Students
Article 2 days ago 3 min read An Electronic Traffic Monitor for Airports
Ground traffic management program saves passengers and airlines time while cutting fuel costs
Article 1 week ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Armstrong Programs & Projects
Armstrong Aeronautics Projects
Armstrong Capabilities & Facilities
View the full article
-
By NASA
Una luna gibosa creciente se eleva sobre el resplandor azul del horizonte terrestre mientras la Estación Espacial Internacional orbitaba a 264 millas sobre el Océano Índico el 13 de Noviembre de 2024.Crédito: NASA Read this release in English here.
El administrador de la NASA, Bill Nelson, y otros directivos darán una rueda de prensa el jueves 5 de diciembre a la 1 p.m. EST (hora del este de EE.UU.) en la sede de la agencia en Washington para proporcionar información sobre la campaña Artemis de la agencia.
El evento para los medios de comunicación estará disponible en NASA+. Aprende a transmitir contenidos de la NASA a través de diversas plataformas, incluidas las redes sociales.
Los participantes incluyen:
Bill Nelson, administrador de la NASA Pam Melroy, administradora adjunta de la NASA Jim Free, administrador asociado de la NASA Catherine Koerner, administradora asociada, Dirección de Misión de Desarrollo de Sistemas de Exploración, Sede de la NASA Amit Kshatriya, administrador asociado adjunto, Oficina del Programa de la Luna a Marte, Dirección de Misión de Desarrollo de Sistemas de Exploración Reid Wiseman, astronauta de la NASA y comandante del Artemis II Los medios de comunicación interesados en participar en persona o por teléfono deben confirmar su asistencia antes de las 11 a.m. EST del 5 de diciembre a: hq-media@mail.nasa.gov. La conferencia de prensa tendrá lugar en el Auditorio James E. Webb de la sede central de la NASA, en el edificio Mary W. Jackson, 300 E St. SW, Washington. La política de acreditación de medios de comunicación de la NASA está disponible en línea (en inglés).
A través de la campaña Artemis, la agencia establecerá una presencia a largo plazo en la Luna para la exploración científica conjuntamente con nuestros socios comerciales e internacionales, aprenderá a vivir y trabajar lejos de nuestro hogar y se preparará para la futura exploración humana de Marte. El cohete Sistema de Lanzamiento Espacial de la NASA, los sistemas terrestres de exploración y la nave espacial Orion, junto con el sistema de aterrizaje humano, los trajes espaciales de próxima generación, la estación espacial lunar, Gateway y los futuros vehículos exploradores son la base de la NASA para la exploración del espacio profundo.
Para más información sobre Artemis (en inglés), visita:
https://www.nasa.gov/artemis
-fin-
Meira Bernstein / Rachel Kraft / María José Viñas
Sede, Washington
202-358-1600
meira.b.bernstein@nasa.gov / rachel.h.kraft@nasa.gov / maria-jose.vinasgarcia@nasa.gov
Share
Details
Last Updated Dec 04, 2024 LocationNASA Headquarters Related Terms
Missions Artemis Exploration Systems Development Mission Directorate NASA Headquarters View the full article
-
By NASA
A waxing gibbous moon rises over the blue glow of Earth’s horizon as the International Space Station orbited 264 miles above the Indian Ocean on Nov. 13, 2024.Credit: NASA NASA Administrator Bill Nelson and leadership will hold a news conference at 1 p.m. EST, Thursday, Dec. 5, at the agency’s headquarters in Washington to provide a briefing about the agency’s Artemis campaign.
Watch the media event on NASA+. Learn how to stream NASA content through a variety of platforms, including social media.
Participants include:
NASA Administrator Bill Nelson NASA Deputy Administrator Pam Melroy NASA Associate Administrator Jim Free Catherine Koerner, associate administrator, Exploration Systems Development Mission Directorate, NASA Headquarters Amit Kshatriya, deputy associate administrator, Moon to Mars Program Office, Exploration Systems Development Mission Directorate Reid Wiseman, NASA astronaut and Artemis II commander Media interested in participating in-person or by phone must RSVP by 11 a.m. on Dec. 5 to: hq-media@mail.nasa.gov. The news conference will take place in the James E. Webb Auditorium at NASA Headquarters in the Mary W. Jackson building, 300 E St. SW, Washington. A copy of NASA’s media accreditation policy is online.
Through the Artemis campaign, the agency will establish a long-term presence at the Moon for scientific exploration with our commercial and international partners, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing systems, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
For more information about Artemis, visit:
https://www.nasa.gov/artemis
-end-
Meira Bernstein / Rachel Kraft
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / rachel.h.kraft@nasa.gov
Share
Details
Last Updated Dec 04, 2024 LocationNASA Headquarters Related Terms
Missions Artemis Exploration Systems Development Mission Directorate NASA Headquarters View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The UAVSAR underbelly pod is in clear view as NASA’s Gulfstream-III research aircraft banks away over Edwards AFBNASA On a changing planet, where phenomena like severe hurricanes, landslides, and wildfires are becoming more severe, scientists need data to assess and model disaster impacts and to potentially make predictions about hazards. NASA’s C-20A aircraft is a significant asset that can carry key instruments for understanding the science behind these phenomena.
Based at NASA’s Armstrong Flight Research Center in Edwards, California, the C-20A is a military version of the Gulfstream III business jet and operates as an airborne science aircraft for a variety of Earth science research missions.
In October, the plane was deployed to fly over areas affected by Hurricane Milton. With winds of up to 120 miles per hour, the hurricane hit the Florida coast as a category 3 storm, and produced lightning, heavy rainfall, and a series of tornadoes. In the aftermath of the storm, the C-20A was outfitted with the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument to collect detailed data about the affected flood areas.
“Our team focused specifically on inland river flooding near dense populations, collecting data that could help inform disaster response and preparation in the future,” said Starr Ginn, C-20A aircraft project manager. “By all indications, this rapid response to support Hurricane Milton recovery efforts was a successful coordination of efforts by science and aircraft teams.”
The Uninhabited Aerial Vehicle Synthetic Aperture Radar, UAVSAR, is prepared for installation onto NASA’s C-20A aircraft. THE UAVSAR uses a technique called interferometry to detect and measure very subtle deformations in the Earth’s surface, and the pod is specially designed to be interoperable with unmanned aircraft in the future. It will gather data from Gabon, Africa in September of 2023.NASA/Steve Freeman The UAVSAR was developed by NASA’s Jet Propulsion Laboratory in Southern California, and uses a technique called interferometry to detect subtle changes to Earth’s surface. Interferometry uses the intersection of multiple wavelengths to make precise measurements. This detection system effectively measures the terrain changes or impacts before and after an extreme natural event.
When flown onboard an aircraft, radars like the UAVSAR can also provide more detail than satellite radars. “Where satellite instruments might only get a measurement every one to two weeks, the UAVSAR can fill in points between satellite passes to calibrate ground-based instruments,” Ginn said. “It takes data at faster rates and with more precision. We can design overlapping flights in three or more directions to detect more textures and motions on the Earth’s surface. This is a big advantage over the one-dimensional line-of-sight measurement provided by a single flight.”
The C-20A team also used the UAVSAR in October to investigate the Portuguese Bend landslide in Rancho Pales Verdes. The Portuguese Bend Landslide began in the mid- to late-Pleistocene period over 11,000 years ago. Though inactive for thousands of years, the landslide was reactivated in 1956 when a road construction project added weight to the top of it. Recently, the landslide has been moving at increasing rates during dry seasons.
NASA’s JPL scientists, Xiang Li, Alexander Handwerger, Gilles Peltzer, and Eric Fielding have been researching this landslide progression using satellite-based instruments. “The high-resolution capability of UAVSAR is ideal for landslides since they have relatively small features,” said Ginn. “This helps us understand the different characteristics of the landslide body.”
NASA flew an aircraft equipped with Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) flew above California fires on Sept. 3 and 10, 2020.NASA/JPL-Caltech The C-20A airborne observatory also provided crucial insight for studies of wildfire. The Fire and Smoke Model Evaluation Experiment (FASMEE), a multi-agency experiment led by the U.S. Department of Agriculture’s Forest Service Pacific Northwest Research Station, included flights of the C-20A. This experiment studied fire behavior and smoke.
“The airborne perspective allows FASMEE researchers to better understand fire behavior and smoke production,” said Michael Falkowski, program manager for NASA’s Applied Sciences Wildland Fire program. “Hopefully this data will help mitigate fire risk, restore degraded ecosystems, and protect human communities from catastrophic fire.”
Airborne data can inform how scientists and experts understand extreme phenomena on the ground. Researchers on the FASMEE experiment will use the data collected from the UAVSAR instrument to map the forest’s composition and moisture to track areas impacted by the fire, and to study how the fire progressed.
“We can explore how fire managers can use airborne data to help make decisions about fires,” added Jacquelyn Shuman, FireSense project scientist at NASA’s Ames Research Center in California’s Silicon Valley.
Share
Details
Last Updated Dec 04, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center C-20A Earth Science Earth's Atmosphere Jet Propulsion Laboratory Explore More
4 min read 2024 AGU Fall Meeting Hyperwall Schedule
NASA Science at AGU Fall Meeting Hyperwall Schedule, December 9-12, 2024 Join NASA in the…
Article 41 mins ago 3 min read NASA Experts Share Inspiring Stories of Perseverance to Students
Article 2 days ago 2 min read This Thanksgiving, We’re Grateful for NASA’s Volunteer Scientists!
This year, we’re giving thanks to you for Doing NASA Science! You and the millions…
Article 1 week ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Earth Science
Climate Change
NASA is a global leader in studying Earth’s changing climate.
Jet Propulsion Laboratory
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.