Jump to content

20 Jumpgate Missions to Mars through jumpgate portals located in El Segundo, California


USH

Recommended Posts

Andrew Basiago, J.D., claims that he visited Mars 20 times between 1981 and 1984 through a Jumpgate located in El Segundo, California. He says others, including VIPs such as former CIA Director Admiral Stansfeld Turner, were also sent to the Martian surface through eight jumpgate portals dispersed around the middle latitudes. Basiago says the average daily temperature was around 70 degrees Fahrenheit, and the air was similar in oxygen content to an altitude of 11,000 feet on Earth. 

jumpgate%20portal%20mars.jpg
Basiago claims that at any one time there were up to 1,500 Americans on Mars surface that were there to maintain a continuous presence, and they had to escape numerous predators. His experiences with Mars predators and other wildlife led to him recognizing some of these animals and vegetation in NASA Rover images. 

His most controversial claims concern unusual creatures he says can be identified in other Mars Rover and satellite imagery, which includes a scorpion man and gremlins. Basiago refutes criticism that what he witnessed in the Mars images is merely a case of pareidolia, especially when it comes to an alleged image of a striding gremlin in what appears to be a small grove of trees. In the subsequent discussion, Dr. Michael Salla proposes a distinction between objects Basiago recognized from his time on Mars, which can be asserted to be corroborating evidence for his overall experiences, to other objects such as gremlins, which may be attributed as pareidolia. 

Regardless of the more controversial elements of Andrew Basiago's analyses of Mars Rover and satellite images, his detailed memories of travel to Mars on 20 occasions where he spent significant periods on the Red Planet from 1981 to 1984 have been independently corroborated by several other individuals. These include Brett Stillings, William White Crow and Bernard Mendez who all have publicly confirmed their participation in the Mars Jumpgate program, and the involvement of others such as Major Ed Dames. 

Related articles: 
Project Pegasus: Travelling to Mars – Teleportation and “Jump Rooms”https://ufosightingshotspot.blogspot.com/2013/02/project-pegasus-travelling-to-mars.html 
Andrew Basiago issues statement on planet-transforming and global teleportationhttps://ufosightingshotspot.blogspot.com/2016/03/time-traveler-andy-basiago-issues.html

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers think meltwater beneath Martian ice could support microbial life.
      The white material seen within this Martian gully is believed to be dusty water ice. Scientists believe this kind of ice could be an excellent place to look for microbial life on Mars today. This image, showing part of a region called Dao Vallis, was captured by NASA’s Mars Reconnaissance Orbiter in 2009.NASA/JPL-Caltech/University of Arizona These holes, captured on Alaska’s Matanuska Glacier in 2012, are formed by cryoconite — dust particles that melt into the ice over time, eventually forming small pockets of water below the glacier’s surface. Scientists believe similar pockets of water could form within dusty water ice on Mars.Kimberly Casey CC BY-NC-SA 4.0 While actual evidence for life on Mars has never been found, a new NASA study proposes microbes could find a potential home beneath frozen water on the planet’s surface.
      Through computer modeling, the study’s authors have shown that the amount of sunlight that can shine through water ice would be enough for photosynthesis to occur in shallow pools of meltwater below the surface of that ice. Similar pools of water that form within ice on Earth have been found to teem with life, including algae, fungi, and microscopic cyanobacteria, all of which derive energy from photosynthesis.
      “If we’re trying to find life anywhere in the universe today, Martian ice exposures are probably one of the most accessible places we should be looking,” said the paper’s lead author, Aditya Khuller of NASA’s Jet Propulsion Laboratory in Southern California.
      Mars has two kinds of ice: frozen water and frozen carbon dioxide. For their paper, published in Nature Communications Earth & Environment, Khuller and colleagues looked at water ice, large amounts of which formed from snow mixed with dust that fell on the surface during a series of Martian ice ages in the past million years. That ancient snow has since solidified into ice, still peppered with specks of dust.  
      Although dust particles may obscure light in deeper layers of the ice, they are key to explaining how subsurface pools of water could form within ice when exposed to the Sun: Dark dust absorbs more sunlight than the surrounding ice, potentially causing the ice to warm up and melt up to a few feet below the surface.
      The white edges along these gullies in Mars’ Terra Sirenum are believed to be dusty water ice. Scientists think meltwater could form beneath the surface of this kind of ice, providing a place for possible photosynthesis. This is an enhanced-color image; the blue color would not actually be perceptible to the human eye.NASA/JPL-Caltech/University of Arizona Mars scientists are divided about whether ice can actually melt when exposed to the Martian surface. That’s due to the planet’s thin, dry atmosphere, where water ice is believed to sublimate — turn directly into gas — the way dry ice does on Earth. But the atmospheric effects that make melting difficult on the Martian surface wouldn’t apply below the surface of a dusty snowpack or glacier.
      Thriving Microcosms
      On Earth, dust within ice can create what are called cryoconite holes — small cavities that form in ice when particles of windblown dust (called cryoconite) land there, absorb sunlight, and melt farther into the ice each summer. Eventually, as these dust particles travel farther from the Sun’s rays, they stop sinking, but they still generate enough warmth to create a pocket of meltwater around them. The pockets can nourish a thriving ecosystem for simple lifeforms..
      “This is a common phenomenon on Earth,” said co-author Phil Christensen of Arizona State University in Tempe, referring to ice melting from within. “Dense snow and ice can melt from the inside out, letting in sunlight that warms it like a greenhouse, rather than melting from the top down.”
      Christensen has studied ice on Mars for decades. He leads operations for a heat-sensitive camera called THEMIS (Thermal Emission Imaging System) aboard NASA’s 2001 Mars Odyssey orbiter. In past research, Christensen and Gary Clow of the University of Colorado Boulder used modeling to demonstrate how liquid water could form within dusty snowpack on the Red Planet. That work, in turn, provided a foundation for the new paper focused on whether photosynthesis could be possible on Mars.
      In 2021, Christensen and Khuller co-authored a paper on the discovery of dusty water ice exposed within gullies on Mars, proposing that many Martian gullies form by erosion caused by the ice melting to form liquid water.
      This new paper suggests that dusty ice lets in enough light for photosynthesis to occur as deep as 9 feet (3 meters) below the surface. In this scenario, the upper layers of ice prevent the shallow subsurface pools of water from evaporating while also providing protection from harmful radiation. That’s important, because unlike Earth, Mars lacks a protective magnetic field to shield it from both the Sun and radioactive cosmic ray particles zipping around space.
      The study authors say the water ice that would be most likely to form subsurface pools would exist in Mars’ tropics, between 30 degrees and 60 degrees latitude, in both the northern and southern hemispheres.
      Khuller next hopes to re-create some of Mars’ dusty ice in a lab to study it up close. Meanwhile, he and other scientists are beginning to map out the most likely spots on Mars to look for shallow meltwater — locations that could be scientific targets for possible human and robotic missions in the future.
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-142
      Share
      Details
      Last Updated Oct 17, 2024 Related Terms
      Mars Astrobiology Jet Propulsion Laboratory Explore More
      4 min read New Team to Assess NASA’s Mars Sample Return Architecture Proposals
      NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the…
      Article 20 hours ago 6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
      Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
      Article 1 day ago 5 min read Snippet of Euclid Mission’s Cosmic Atlas Released by ESA
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      The Copernicus Sentinel Expansion Missions are a major leap forward in Europe’s Earth observation capabilities. With the United Kingdom’s re-entry to the EU’s Copernicus programme, funding has been confirmed to complete the development of all six Copernicus Sentinel Expansion Missions, as discussed this week during the International Astronautical Congress taking place in Milan, Italy.
      View the full article
    • By NASA
      Mars Sample Return MSR Home Mission Concept Overview Perseverance Rover Sample Retrieval Lander Mars Ascent Vehicle Sample Recovery Helicopters Earth Return Orbiter Science Overview Bringing Mars Samples to Earth Mars Rock Samples MSR Science Community Member Sign up News and Features Multimedia Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
      New Team to Assess NASA’s Mars Sample Return Architecture Proposals
      NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the agency’s Mars Sample Return Program, which aims to bring back scientifically selected samples from Mars, and is a key step in NASA’s quest to better understand our solar system and help answer whether we are alone in the universe.
      Earlier this year, the agency commissioned design studies from the NASA community and eight selected industry teams on how to return Martian samples to Earth in the 2030s while lowering the cost, risk, and mission complexity. The new strategy review team will assess 11 studies conducted by industry, a team across NASA centers, the agency’s Jet Propulsion Laboratory in Southern California, and the Johns Hopkins Applied Physics Laboratory. The team will recommend to NASA a primary architecture for the campaign, including associated cost and schedule estimates.
      “Mars Sample Return will require a diversity of opinions and ideas to do something we’ve never done before: launch a rocket off another planet and safely return samples to Earth from more than 33 million miles away,” said NASA Administrator Bill Nelson. “It is critical that Mars Sample Return is done in a cost-effective and efficient way, and we look forward to learning the recommendations from the strategy review team to achieve our goals for the benefit of humanity.”
      Returning samples from Mars has been a major long-term goal of international planetary exploration for more than three decades, and the Mars Sample Return Program is jointly planned with ESA (European Space Agency). NASA’s Perseverance rover is collecting compelling science samples that will help scientists understand the geological history of Mars, the evolution of its climate, and potential hazards for future human explorers. Retrieval of the samples also will help NASA’s search for signs of ancient life.
      The team’s report is anticipated by the end of 2024 and will examine options for a complete mission design, which may be a composite of multiple studied design elements. The team will not recommend specific acquisition strategies or partners. The strategy review team has been chartered under a task to the Cornell Technical Services contract. The team may request input from a NASA analysis team that consists of government employees and expert consultants. The analysis team also will provide programmatic input such as a cost and schedule assessment of the architecture recommended by the strategy review team.
      The Mars Sample Return Strategy Review Team is led by Jim Bridenstine, former NASA administrator, and includes the following members:
      Greg Robinson, former program director, James Webb Space Telescope Lisa Pratt, former planetary protection officer, NASA Steve Battel, president, Battel Engineering; Professor of Practice, University of Michigan, Ann Arbor Phil Christensen, regents professor, School of Earth and Space Exploration, Arizona State University, Tempe Eric Evans, director emeritus and fellow, MIT Lincoln Lab Jack Mustard, professor of Earth, Environmental, and Planetary Science, Brown University Maria Zuber, E. A. Griswold professor of Geophysics and presidential advisor for science and technology policy, MIT The NASA Analysis Team is led by David Mitchell, chief program management officer at NASA Headquarters, and includes the following members:
      John Aitchison, program business manager (acting), Mars Sample Return Brian Corb, program control/schedule analyst, NASA Headquarters Steve Creech, assistant deputy associate administrator for Technical, Moon to Mars Program Office, NASA Headquarters Mark Jacobs, senior systems engineer, NASA Headquarters Rob Manning, chief engineer emeritus, NASA JPL Mike Menzel, senior engineer, NASA Goddard Fernando Pellerano, senior advisor for Systems Engineering, NASA Goddard Ruth Siboni, chief of staff, Moon to Mars Program Office, NASA Headquarters Bryan Smith, director of Facilities, Test and Manufacturing, NASA Glenn Ellen Stofan, under secretary for Science and Research, Smithsonian For more information on NASA’s Mars Sample Return, visit:
      https://science.nasa.gov/mission/mars-sample-return

      Dewayne Washington
      Headquarters, Washington
      202-358-1100
      dewayne.a.washington@nasa.gov 
      Share








      Details
      Last Updated Oct 16, 2024 Related Terms
      Mars Mars Sample Return (MSR) Missions Explore More
      3 min read NASA’s Hubble Sees a Stellar Volcano


      Article


      7 hours ago
      6 min read NASA, NOAA: Sun Reaches Maximum Phase in 11-Year Solar Cycle


      Article


      1 day ago
      2 min read ESA/NASA’s SOHO Spies Bright Comet Making Debut in Evening Sky
      The Solar and Heliospheric Observatory (SOHO) has captured images of the second-brightest comet to ever pass…


      Article


      5 days ago
      Keep Exploring Discover Related Topics
      Mars Sample Return


      Mars Sample Return would be NASA’s most ambitious, multi-mission campaign that would bring carefully selected Martian samples to Earth for…


      Mars 2020: Perseverance Rover


      NASA’s Mars Perseverance rover seeks signs of ancient life and collects samples of rock and regolith for possible Earth return.


      Mars Science Laboratory: Curiosity Rover


      Part of NASA’s Mars Science Laboratory mission, at the time of launch, Curiosity was the largest and most capable rover…


      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…

      View the full article
    • By NASA
      X-ray: NASA/CXC/Queen’s Univ. Belfast/M. Nicholl et al.; Optical/IR: PanSTARRS, NSF/Legacy Survey/SDSS; Illustration: Soheb Mandhai / The Astro Phoenix; Image Processing: NASA/CXC/SAO/N. Wolk NASA’s Chandra X-ray Observatory and other telescopes have identified a supermassive black hole that has torn apart one star and is now using that stellar wreckage to pummel another star or smaller black hole, as described in our latest press release. This research helps connect two cosmic mysteries and provides information about the environment around some of the bigger types of black holes.
      This artist’s illustration shows a disk of material (red, orange, and yellow) that was created after a supermassive black hole (depicted on the right) tore apart a star through intense tidal forces. Over the course of a few years, this disk expanded outward until it intersected with another object — either a star or a small black hole — that is also in orbit around the giant black hole. Each time this object crashes into the disk, it sends out a burst of X-rays detected by Chandra. The inset shows Chandra data (purple) and an optical image of the source from Pan-STARRS (red, green, and blue).
      In 2019, an optical telescope in California noticed a burst of light that astronomers later categorized as a “tidal disruption event”, or TDE. These are cases where black holes tear stars apart if they get too close through their powerful tidal forces. Astronomers gave this TDE the name of AT2019qiz.
      Meanwhile, scientists were also tracking instances of another type of cosmic phenomena occasionally observed across the Universe. These were brief and regular bursts of X-rays that were near supermassive black holes. Astronomers named these events “quasi-periodic eruptions,” or QPEs.
      This latest study gives scientists evidence that TDEs and QPEs are likely connected. The researchers think that QPEs arise when an object smashes into the disk left behind after the TDE. While there may be other explanations, the authors of the study propose this is the source of at least some QPEs.
      In 2023, astronomers used both Chandra and Hubble to simultaneously study the debris left behind after the tidal disruption had ended. The Chandra data were obtained during three different observations, each separated by about 4 to 5 hours. The total exposure of about 14 hours of Chandra time revealed only a weak signal in the first and last chunk, but a very strong signal in the middle observation.
      From there, the researchers used NASA’s Neutron Star Interior Composition Explorer (NICER) to look frequently at AT2019qiz for repeated X-ray bursts. The NICER data showed that AT2019qiz erupts roughly every 48 hours. Observations from NASA’s Neil Gehrels Swift Observatory and India’s AstroSat telescope cemented the finding.
      The ultraviolet data from Hubble, obtained at the same time as the Chandra observations, allowed the scientists to determine the size of the disk around the supermassive black hole. They found that the disk had become large enough that if any object was orbiting the black hole and took about a week or less to complete an orbit, it would collide with the disk and cause eruptions.
      This result has implications for searching for more quasi-periodic eruptions associated with tidal disruptions. Finding more of these would allow astronomers to measure the prevalence and distances of objects in close orbits around supermassive black holes. Some of these may be excellent targets for the planned future gravitational wave observatories.
      The paper describing these results appears in the October 9, 2024 issue of the journal Nature. The first author of the paper is Matt Nicholl (Queen’s University Belfast in Ireland) and the full list of authors can be found in the paper, which is available online at: https://arxiv.org/abs/2409.02181
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features an artist’s rendering that illustrates the destructive power of a supermassive black hole. The digital image depicts a disk of stellar material surrounding one such black hole. At its outer edge a neighboring star is colliding with and flying through the disk.
      The black hole sits halfway down our right edge of the vertical image. It resembles a jet black semicircle with a domed cap of pale blue light. The bottom half of the circular black hole is hidden behind the disk of stellar material. In this illustration, the disk is viewed edge on. It resembles a band of swirling yellow, orange, and red gas, cutting diagonally from our middle right toward our lower left.
      Near our lower left, the outer edge of the stellar debris disk overlaps with a bright blue sphere surrounded by luminous white swirls. This sphere represents a neighboring star crashing through the disk. The stellar disk is the wreckage of a destroyed star. An electric blue and white wave shows the hottest gas in the disk.
      As the neighboring star crashes through the disk it leaves behind a trail of gas depicted as streaks of fine mist. Bursts of X-rays are released and are detected by Chandra.
      Superimposed in the upper left corner of the illustration is an inset box showing a close up image of the source in X-ray and optical light. X-ray light is shown as purple and optical light is white and beige.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By European Space Agency
      ESA’s Mars Express has captured an astonishing array of landforms emerging from a thick winter blanket of frost as spring arrives in the south polar region of Mars. Some of these features are surprisingly dark compared with their icy surroundings, earning their nickname of ‘cryptic terrain’.
      View the full article
  • Check out these Videos

×
×
  • Create New...