Jump to content

20 Jumpgate Missions to Mars through jumpgate portals located in El Segundo, California


Recommended Posts

Posted
Andrew Basiago, J.D., claims that he visited Mars 20 times between 1981 and 1984 through a Jumpgate located in El Segundo, California. He says others, including VIPs such as former CIA Director Admiral Stansfeld Turner, were also sent to the Martian surface through eight jumpgate portals dispersed around the middle latitudes. Basiago says the average daily temperature was around 70 degrees Fahrenheit, and the air was similar in oxygen content to an altitude of 11,000 feet on Earth. 

jumpgate%20portal%20mars.jpg
Basiago claims that at any one time there were up to 1,500 Americans on Mars surface that were there to maintain a continuous presence, and they had to escape numerous predators. His experiences with Mars predators and other wildlife led to him recognizing some of these animals and vegetation in NASA Rover images. 

His most controversial claims concern unusual creatures he says can be identified in other Mars Rover and satellite imagery, which includes a scorpion man and gremlins. Basiago refutes criticism that what he witnessed in the Mars images is merely a case of pareidolia, especially when it comes to an alleged image of a striding gremlin in what appears to be a small grove of trees. In the subsequent discussion, Dr. Michael Salla proposes a distinction between objects Basiago recognized from his time on Mars, which can be asserted to be corroborating evidence for his overall experiences, to other objects such as gremlins, which may be attributed as pareidolia. 

Regardless of the more controversial elements of Andrew Basiago's analyses of Mars Rover and satellite images, his detailed memories of travel to Mars on 20 occasions where he spent significant periods on the Red Planet from 1981 to 1984 have been independently corroborated by several other individuals. These include Brett Stillings, William White Crow and Bernard Mendez who all have publicly confirmed their participation in the Mars Jumpgate program, and the involvement of others such as Major Ed Dames. 

Related articles: 
Project Pegasus: Travelling to Mars – Teleportation and “Jump Rooms”https://ufosightingshotspot.blogspot.com/2013/02/project-pegasus-travelling-to-mars.html 
Andrew Basiago issues statement on planet-transforming and global teleportationhttps://ufosightingshotspot.blogspot.com/2016/03/time-traveler-andy-basiago-issues.html

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A test rover with shape memory alloy spring tires traverses rocky, Martian-simulated terrain.Credit: NASA The mystique of Mars has been studied for centuries. The fourth planet from the Sun is reminiscent of a rich, red desert and features a rugged surface challenging to traverse. While several robotic missions have landed on Mars, NASA has only explored 1% of its surface. Ahead of future human and robotic missions to the Red Planet, NASA recently completed rigorous rover testing on Martian-simulated terrain, featuring revolutionary shape memory alloy spring tire technology developed at the agency’s Glenn Research Center in Cleveland in partnership with Goodyear Tire & Rubber.

      Rovers — mobile robots that explore lunar or planetary surfaces — must be equipped with adequate tires for the environments they’re exploring. As Mars has an uneven, rocky surface, durable tires are essential for mobility. Shape memory alloy (SMA) spring tires help make that possible.

      Shape memory alloys are metals that can return to their original shape after being bent, stretched, heated, and cooled. NASA has used them for decades, but applying this technology to tires is a fairly new concept.
      “We at Glenn are one of the world leaders in bringing the science and understanding of how you change the alloy compositions, how you change the processing of the material, and how you model these systems in a way that we can control and stabilize the behaviors so that they can actually be utilized in real applications,” said Dr. Santo Padula II, materials research engineer at NASA Glenn.
      Researchers from NASA’s Glenn Research Center and Airbus Defence & Space pose with a test rover on Martian-simulated terrain.Credit: NASA Padula and his team have tested several applications for SMAs, but his epiphany of the possibilities for tires came about because of a chance encounter.
      While leaving a meeting, Padula encountered Colin Creager, a mechanical engineer at NASA Glenn whom he hadn’t seen in years. Creager used the opportunity to tell him about the work he was doing in the NASA Glenn Simulated Lunar Operations (SLOPE) Laboratory, which can simulate the surfaces of the Moon and Mars to help scientists test rover performance. He brought Padula to the lab, where Padula immediately took note of the spring tires. At the time, they were made of steel.
      Padula remarked, “The minute I saw the tire, I said, aren’t you having problems with those plasticizing?” Plasticizing refers to a metal undergoing deformation that isn’t reversible and can lead to damage or failure of the component.
      “Colin told me, ‘That’s the only problem we can’t solve.’” Padula continued, “I said, I have your solution. I’m developing a new alloy that will solve that. And that’s how SMA tires started.”
      From there, Padula, Creager, and their teams joined forces to improve NASA’s existing spring tires with a game-changing material: nickel-titanium SMAs. The metal can accommodate deformation despite extreme stress, permitting the tires to return to their original shape even with rigorous impact, which is not possible for spring tires made with conventional metal.

      Credit: NASA Since then, research has been abundant, and in the fall of 2024, teams from NASA Glenn traveled to Airbus Defence and Space in Stevenage, United Kingdom, to test NASA’s innovative SMA spring tires. Testing took place at the Airbus Mars Yard — an enclosed facility created to simulate the harsh conditions of Martian terrain.
      “We went out there with the team, we brought our motion tracking system and did different tests uphill and back downhill,” Creager said. “We conducted a lot of cross slope tests over rocks and sand where the focus was on understanding stability because this was something we had never tested before.”
      During the tests, researchers monitored rovers as the wheels went over rocks, paying close attention to how much the crowns of the tires shifted, any damage, and downhill sliding. The team expected sliding and shifting, but it was very minimal, and testing met all expectations. Researchers also gathered insights about the tires’ stability, maneuverability, and rock traversal capabilities.
      As NASA continues to advance systems for deep space exploration, the agency’s Extravehicular Activity and Human Surface Mobility program enlisted Padula to research additional ways to improve the properties of SMAs for future rover tires and other potential uses, including lunar environments.
      “My goal is to extend the operating temperature capability of SMAs for applications like tires, and to look at applying these materials for habitat protection,” Padula said. “We need new materials for extreme environments that can provide energy absorption for micrometeorite strikes that happen on the Moon to enable things like habitat structures for large numbers of astronauts and scientists to do work on the Moon and Mars.”
      Researchers say shape memory alloy spring tires are just the beginning.
      Explore More
      4 min read NASA Scientists, Engineers Receive Presidential Early Career Awards 
      Article 4 days ago 3 min read NASA Scientists Find New Human-Caused Shifts in Global Water Cycle
      Article 5 days ago 6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope
      Article 7 days ago View the full article
    • By NASA
      NASA’s SPHEREx observatory will use a technique called spectroscopy across the entire sky, capturing the universe in more than 100 colors.Credit: BAE Systems Media accreditation is open for the launch of two NASA missions that will explore the mysteries of our universe and Sun.
      The agency is targeting late February to launch its SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) observatory, a space telescope that will create a 3D map of the entire sky to help scientists investigate the origins of our universe. NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which will study origins of the Sun’s outflow of material, or the solar wind, also will ride to space with the telescope.
      NASA and SpaceX will launch the missions aboard the company’s Falcon 9 rocket from Space Launch Complex 4E at Vandenberg Space Force Base in California.

      Accredited media will have the opportunity to participate in a series of prelaunch briefings and interviews with key mission personnel, including a science briefing the week of launch. NASA will communicate additional details regarding the media event schedule as the launch date approaches.
      Media interested in covering the launch must apply for media accreditation. The application deadline for U.S. citizens is 11:59 p.m. EST, Thursday, Feb. 6, while international media without U.S. citizenship must apply by 11:59 p.m., Monday, Jan. 20.

      NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other mission questions, please contact the newsroom at NASA’s Kennedy Space Center in Florida at 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      Updates about spacecraft launch preparations are available on the agency’s SPHEREx blog and PUNCH blog.

      The SPHEREx mission will observe hundreds of millions of stars and galaxies in infrared light, a range of wavelengths not visible to the human eye. With this map, SPHEREx will enable scientists to study inflation, or the rapid expansion of the universe a fraction of a second after the big bang. The observatory also will measure the collective glow from galaxies near and far, including light from hidden galaxies that individually haven’t been observed, and look for reservoirs of water, carbon dioxide, and other key ingredients for life in our home galaxy.
      Launching as a rideshare with SPHEREx, the agency’s PUNCH mission is made up of four suitcase-sized satellites that will spread out around Earth’s day-night line to observe the Sun and space with a combined field of view. Working together, the four satellites will map out the region where the Sun’s outer atmosphere, the corona, transitions to the solar wind, or the constant outflow of material from the Sun.

      The SPHEREx observatory is managed by NASA’s Jet Propulsion Laboratory in Southern California for the Astrophysics Division within the agency’s Science Mission Directorate in Washington. The mission principal investigator is based jointly at NASA JPL and Caltech. Formerly Ball Aerospace, BAE Systems built the telescope, supplied the spacecraft bus, and performed observatory integration. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech. The SPHEREx data set will be publicly available.

      The agency’s PUNCH mission is led by Southwest Research Institute’s office in Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate. NASA’s Launch Services Program, based at NASA Kennedy, manages the launch service for the SPHEREx and PUNCH missions.
      For more details about the SPHEREx mission and updates on launch preparations, visit:
      https://science.nasa.gov/mission/spherex
      -end-
      Alise Fisher (SPHEREx)
      Headquarters, Washington
      202-617-4977
      alise.m.fisher@nasa.gov
      Sarah Frazier (PUNCH)
      Goddard Space Flight Center, Maryland
      202-853-7191
      sarah.frazier@nasa.gov
      Laura Aguiar
      Kennedy Space Center, Florida
      321-593-6245
      laura.aguiar@nasa.gov
      Share
      Details
      Last Updated Jan 13, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Goddard Space Flight Center Heliophysics Jet Propulsion Laboratory Kennedy Space Center Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the Thermo-Photo-Catalysis of Water for Crewed Mars Transit Spacecraft Oxygen Supply concept.NASA/Saurabh Vilekar Saurabh Vilekar
      Precision Combustion
      Precision Combustion, Inc. (PCI) proposes to develop a uniquely compact, lightweight, low-power, and durable Microlith® Thermo-Photo-Catalytic (TPC) Reactor for crewed Mars transit spacecraft O2 supply. As crewed space exploration mission destinations move from low Earth orbit to sustained lunar surface habitation toward Mars exploration, the need becomes more intense to supplant heritage physico-chemical unit operations employed for crewed spacecraft cabin CO2 removal, CO2 reduction, and O2 supply. The primary approach to date has been toward incremental improvement of the heritage, energy intensive process technologies used aboard the International Space Station (ISS), particularly for water electrolysis-based O2 generation. A major breakthrough is necessary to depose these energy intensive process technologies either partly or completely. This is achievable by considering the recent advances in photocatalysis. Applications are emerging for converting CO2 to useful commodity products and generating H2 from atmospheric water vapor. Considering these developments, a low power thermo-photo-catalytic process to replace the heritage high-power water electrolysis process is proposed for application to a Mars transit vehicle life support system (LSS) functional architecture. A key component in realizing this breakthrough is utilizing a catalyst substrate such as Microlith that affords high surface area and promotes mass transport to the catalyst surface. The proposed TPC oxygenator is expected to operate passively to continually renew the O2 content of the cabin atmosphere. The targeted mission for the proposed TPC oxygenator technology deployment is a 2039 Long Stay, Earth-Mars-Earth mission opportunity. This mission as defined by the Moon to Mars (M2M) 2024 review consists of 337.9 days outbound, 348.5 days in Mars vicinity, and 295.8 days return for a total 982.2-day mission. The proposed Microlith oxygenator technology, if successful, is envisioned to replace the OGA technology in the LSS process architecture with significant weight and power savings. In Phase I, we will demonstrate technical feasibility of Microlith TPC for O2 generation, interface requirements, and integration trade space and a clear path towards a prototype demonstration in Phase II will also be described in the final report.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated Jan 10, 2025 EditorLoura Hall Related Terms
      NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
    • By NASA
      Modular Assembled Radiators for Nuclear Electric Propulsion Vehicles, or MARVL, aims to take a critical element of nuclear electric propulsion, its heat dissipation system, and divide it into smaller components that can be assembled robotically and autonomously in space. This is an artist’s rendering of what the fully assembled system might look like.NASA The trip to Mars and back is not one for the faint of heart. We’re not talking days, weeks, or months. But there are technologies that could help transport a crew on that round-trip journey in a relatively quick two years.
      One option NASA is exploring is nuclear electric propulsion, which employs a nuclear reactor to generate electricity that ionizes, or positively charges, and electrically accelerates gaseous propellants to provide thrust to a spacecraft.
      Researchers at NASA’s Langley Research Center in Hampton, Virginia, are working on a system that could help bring nuclear electric propulsion one significant, technology-defining step closer to reality.
      Modular Assembled Radiators for Nuclear Electric Propulsion Vehicles, or MARVL, aims to take a critical element of nuclear electric propulsion, its heat dissipation system, and divide it into smaller components that can be assembled robotically and autonomously in space.
      “By doing that, we eliminate trying to fit the whole system into one rocket fairing,” said Amanda Stark, a heat transfer engineer at NASA Langley and the principal investigator for MARVL. “In turn, that allows us to loosen up the design a little bit and really optimize it.”
      Loosening up the design is key, because as Stark mentioned, previous ideas called for fitting the entire nuclear electric radiator system under a rocket fairing, or nose cone, which covers and protects a payload. Fully deployed, the heat dissipating radiator array would be roughly the size of a football field. You can imagine the challenge engineers would face in getting such a massive system folded up neatly inside the tip of a rocket.
      The MARVL technology opens a world of possibilities. Rather than cram the whole system into an existing rocket, this would allow researchers the flexibility to send pieces of the system to space in whatever way would make the most sense, then have it all assembled off the planet.
      Once in space, robots would connect the nuclear electric propulsion system’s radiator panels, through which a liquid metal coolant, such as a sodium-potassium alloy, would flow.
      While this is still an engineering challenge, it is exactly the kind of engineering challenge in-space-assembly experts at NASA Langley have been working on for decades. The MARVL technology could mark a significant first milestone. Rather than being an add-on to an existing technology, the in-space assembly component will benefit and influence the design of the very spacecraft it would serve.
      “Existing vehicles have not previously considered in-space assembly during the design process, so we have the opportunity here to say, ‘We’re going to build this vehicle in space. How do we do it? And what does the vehicle look like if we do that?’ I think it’s going to expand what we think of when it comes to nuclear propulsion,” said Julia Cline, a mentor for the project in NASA Langley’s Research Directorate, who led the center’s participation in the Nuclear Electric Propulsion tech maturation plan development as a precursor to MARVL. That tech maturation plan was run out of the agency’s Space Nuclear Propulsion project at Marshall Space Flight Center in Huntsville, Alabama.
      NASA’s Space Technology Mission Directorate awarded the MARVL project through the Early Career Initiative, giving the team two years to advance the concept. Stark and her teammates are working with an external partner, Boyd Lancaster, Inc., to develop the thermal management system. The team also includes radiator design engineers from NASA’s Glenn Research Center in Cleveland and fluid engineers from NASA’s Kennedy Space Center in Florida. After two years, the team hopes to move the MARVL design to a small-scale ground demonstration.
      The idea of robotically building a nuclear propulsion system in space is sparking imaginations.
      “One of our mentors remarked, ‘This is why I wanted to work at NASA, for projects like this,’” said Stark, “which is awesome because I am so happy to be involved with it, and I feel the same way.”
      Additional support for MARVL comes from the agency’s Space Nuclear Propulsion project. The project’s ongoing effort is maturing technologies for operations around the Moon and near-Earth exploration, deep space science missions, and human exploration using nuclear electric propulsion and nuclear thermal propulsion.
      An artist’s rendering that shows the different components of a fully assembled nuclear electric propulsion system.NASAView the full article
    • By USH
      During a live Fox News broadcast covering the intense Palisades wildfire in California, an unusual event captured viewers' attention. A camera aimed at the blazing inferno recorded a mysterious spherical object emerging suddenly from the middle of the flames. This object moved at a remarkable speed before vanishing over the treetops, leaving many wondering about its origin and purpose. 

      The object does not appear to be debris carried aloft by the fire’s updraft. Its trajectory and speed seem too controlled and deliberate to be a random effect of the wildfire. Additionally, the object shows no signs of explosion or disintegration, characteristics that might be expected if it were merely a piece of material affected by the intense heat. 
      Observers have ruled out common explanations such as birds, planes, or helicopters. The object’s rapid movement and apparent change in direction suggest advanced maneuverability, sparking comparisons to UFOs/UAPs. 
      With the growing number of reported sightings involving drones, orbs, and UFOs, the appearance of this potential UFO or drone in such an environment is especially intriguing. Could this object represent evidence of advanced technology monitoring Earth's natural disasters? Or is it an entirely natural but poorly understood phenomenon?
        View the full article
  • Check out these Videos

×
×
  • Create New...