Members Can Post Anonymously On This Site
Disk-shaped alien craft at the bottom of a crater on Pluto?
-
Similar Topics
-
By NASA
Pandora, NASA’s newest exoplanet mission, is one step closer to launch with the completion of the spacecraft bus, which provides the structure, power, and other systems that will enable the mission to carry out its work.
Watch to learn more about NASA’s Pandora mission, which will revolutionize the study of exoplanet atmospheres.
NASA’s Goddard Space Flight Center “This is a huge milestone for us and keeps us on track for a launch in the fall,” said Elisa Quintana, Pandora’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The bus holds our instruments and handles navigation, data acquisition, and communication with Earth — it’s the brains of the spacecraft.”
Pandora, a small satellite, will provide in-depth study of at least 20 known planets orbiting distant stars in order to determine the composition of their atmospheres — especially the presence of hazes, clouds, and water. This data will establish a firm foundation for interpreting measurements by NASA’s James Webb Space Telescope and future missions that will search for habitable worlds.
Pandora’s spacecraft bus was photographed Jan. 10 within a thermal-vacuum testing chamber at Blue Canyon Technologies in Lafayette, Colorado. The bus provides the structure, power, and other systems that will enable the mission to help astronomers better separate stellar features from the spectra of transiting planets. NASA/Weston Maughan, BCT “We see the presence of water as a critical aspect of habitability because water is essential to life as we know it,” said Goddard’s Ben Hord, a NASA Postdoctoral Program Fellow who discussed the mission at the 245th meeting of the American Astronomical Society in National Harbor, Maryland. “The problem with confirming its presence in exoplanet atmospheres is that variations in light from the host star can mask or mimic the signal of water. Separating these sources is where Pandora will shine.”
Funded by NASA’s Astrophysics Pioneers program for small, ambitious missions, Pandora is a joint effort between Lawrence Livermore National Laboratory in California and NASA Goddard.
“Pandora’s near-infrared detector is actually a spare developed for the Webb telescope, which right now is the observatory most sensitive to exoplanet atmospheres,” Hord added. “In turn, our observations will improve Webb’s ability to separate the star’s signals from those of the planet’s atmosphere, enabling Webb to make more precise atmospheric measurements.”
Astronomers can sample an exoplanet’s atmosphere when it passes in front of its star as seen from our perspective, an event called a transit. Part of the star’s light skims the atmosphere before making its way to us. This interaction allows the light to interact with atmospheric substances, and their chemical fingerprints — dips in brightness at characteristic wavelengths — become imprinted in the light.
But our telescopes see light from the entire star as well, not just what’s grazing the planet. Stellar surfaces aren’t uniform. They sport hotter, unusually bright regions called faculae and cooler, darker regions similar to sunspots, both of which grow, shrink, and change position as the star rotates.
An artist’s concept of the Pandora mission, seen here without the thermal blanketing that will protect the spacecraft, observing a star and its transiting exoplanet. NASA’s Goddard Space Flight Center/Conceptual Image Lab Using a novel all-aluminum, 45-centimeter-wide (17 inches) telescope, jointly developed by Livermore and Corning Specialty Materials in Keene, New Hampshire, Pandora’s detectors will capture each star’s visible brightness and near-infrared spectrum at the same time, while also obtaining the transiting planet’s near-infrared spectrum. This combined data will enable the science team to determine the properties of stellar surfaces and cleanly separate star and planetary signals.
The observing strategy takes advantage of the mission’s ability to continuously observe its targets for extended periods, something flagship missions like Webb, which are in high demand, cannot regularly do.
Over the course of its year-long prime mission, Pandora will observe at least 20 exoplanets 10 times, with each stare lasting a total of 24 hours. Each observation will include a transit, which is when the mission will capture the planet’s spectrum.
Pandora is led by NASA’s Goddard Space Flight Center. Lawrence Livermore National Laboratory provides the mission’s project management and engineering. Pandora’s telescope was manufactured by Corning and developed collaboratively with Livermore, which also developed the imaging detector assemblies, the mission’s control electronics, and all supporting thermal and mechanical subsystems. The infrared sensor was provided by NASA Goddard. Blue Canyon Technologies provided the bus and is performing spacecraft assembly, integration, and environmental testing. NASA’s Ames Research Center in California’s Silicon Valley will perform the mission’s data processing. Pandora’s mission operations center is located at the University of Arizona, and a host of additional universities support the science team.
Download high-resolution video and images from NASA’s Scientific Visualization Studio
By Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
Details
Last Updated Jan 16, 2025 Related Terms
Astrophysics Astrophysics Division Exoplanet Atmosphere Exoplanet Exploration Program Exoplanet Science Exoplanet Transits Exoplanets Goddard Space Flight Center Studying Exoplanets The Universe View the full article
-
By USH
Despite the MSM at the moment keeps a low profile in informing the public about the unidentified drones, the 'drone mystery' is still going on with hundreds of drones spotted across the US, especially the eastern United States.
Check out the size of this high-tech drone, estimated to be around 25-30 feet in length, possibly even larger. It was recently filmed flying low over New Jersey. (Watch the video of the craft at the bottom of the article.)
The mystery surrounding unidentified drones continues to capture attention, particularly across the eastern United States. While mainstream media (MSM) maintains a low profile in reporting on these occurrences, sightings persist, with hundreds of drones reported in various regions.
Officials have repeatedly assured the public that these drones pose no threat to national security. However, skepticism remains high, as the government has yet to provide a comprehensive explanation, leaving many feeling left in the dark.
Dr. Steven Greer recently made a prediction during an interview with Newsmax's Rob Finnerty. He claimed that the drone crisis is likely to escalate "within the next 30 days." According to Greer, the notion of a supposed "alien invasion" is a deliberate distraction designed to obscure the true nature of extraterrestrial encounters, which he asserts have been ongoing for decades. This statement has sparked further speculation among those following developments in the UFO community.
Adding to the anticipation, investigative journalist Ross Coulthart has forecasted that 2025 will mark a turning point in public awareness about extraterrestrial matters. Describing the current period as “the calm before the storm,” Coulthart envisions transformative revelations in the coming year.
Michael Salla, Ph.D., another figure in the disclosure movement, has reported information from a retired U.S. Army serviceman, identified as JP. According to JP, factions within the U.S. military, referred to as "White Hats," along with an international coalition known as the “Earth Alliance,” are preparing to disclose advanced alien technology to the public. This advanced technology, allegedly hidden for decades by shadowy "deep state" organizations and defense contractors, includes three medium-sized cigar-shaped spacecraft and numerous unidentified aerial phenomena (UAPs) stored in an underground facility in Tampa, Florida. These alleged alien-tech craft are said to possess advanced stealth capabilities, allowing them to blend seamlessly with their surroundings.
As part of a broader disclosure strategy, the unveiling of these craft is intended to prepare the public for even larger extraterrestrial revelations in the months ahead.
It seems as two opposing forces are at play:
The Deep State: Allegedly leveraging drones and orbs sightings as part of a staged operation to manipulate public perception to fabricate the illusion of an alien invasion in an attempt to hide the real truth about extraterrestrial encounters and maintain the secrecy around covert programs and maintain control over advanced technologies acquired over the past 70 years.
The Earth Alliance: Seeking to reveal genuine alien technology obtained from real UFO crashes, confirming the existence of extraterrestrial life and promoting transparency.
Whether these predictions will materialize remains to be seen, but they have undeniably heightened public interest in what lies ahead. View the full article
-
By NASA
Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
Perseverance Blasts Past the Top of Jezero Crater Rim
This SuperCam Remote Micro-Imager (RMI) mosaic shows part of the target “Duran,” observed on Sol 1357 near the top of Jezero crater’s rim. It was processed using a color-enhancing Gaussian stretch algorithm. NASA/JPL-Caltech/LANL/CNES/IRAP. I have always loved the mountains. Growing up on the flat plains of Midwestern USA, every summer I looked forward to spending a few days on alpine trails while on vacation. Climbing upward from the trailhead, the views changed constantly. After climbing a short distance, the best views were often had by looking back down on where we had started. As we climbed higher, views of the valleys below eventually became shrouded in haze. Near the top we got our last views of the region behind us; then it disappeared from view as we hiked over the pass and started down the other side. Approaching the summit held a special reward, as the regions beyond the pass slowly revealed themselves. Frequent stops to catch our breath during our ascent were used to check the map to identify the new peaks and other features that came into view. Sometimes the pass was an exciting gateway to a whole new area to explore.
This ever-changing landscape has been our constant companion over the last five months as Perseverance first climbed out of Neretva Vallis, then past “Dox Castle,” and “Pico Turquino.” We stopped at “Faraway Rock” on Sol 1282 to get a panorama of the crater floor. More recently, we could see many more peaks of the crater rim. As Perseverance crested the summit of “Lookout Hill,” half a mile (800 meters) above the traverse’s lowest point, we got our first views beyond the crater rim, out into the great unknown expanse of Mars’ Nili Planum, including the upper reaches of Neretva Vallis and the locations of two other candidate landing sites that were once considered for Perseverance. As the rover crested the summit, Mastcam-Z took a large panoramic mosaic, and team members are excitedly poring over the images, looking at all the new features. With Perseverance’s powerful cameras we can analyze small geological features such as boulders, fluvial bars, and dunes more than 5 miles (8 kilometers) distant, and major features like mountains up to 35 miles (60 kilometers) away. One of our team members excitedly exclaimed, “This is an epic moment in Mars exploration!”
While Curiosity has been climbing “Mount Sharp” for 10 years, and Spirit and Opportunity explored several smaller craters, no extraterrestrial rover has driven out of such a huge crater as Jezero to see a whole new “continent” ahead. We are particularly excited because it is potentially some of the most ancient surface on the Red Planet. Let’s go explore it!
Perseverance is now in Gros Morne quad, named for a beautiful Canadian national park in Newfoundland, and we will be naming our targets using locations and features in the national park. For the drive ahead, described in a video in a recent press release, our next destination is on the lower western edge of the Jezero crater rim at a region named “Witch Hazel Hill.”
Perseverance made more than 250 meters of progress over the weekend (about 820 feet) and is already at the upper part of Witch Hazel Hill, a location called “South Arm.” Much of the climb up the crater rim was on sandy material without many rocks to analyze. Witch Hazel Hill appears to have much more exposed rock, and the science team is excited about the opportunity for better views and analyses of the geology directly beneath our wheels.
Written by Roger C. Wiens, Principal Investigator of the SuperCam instrument, Purdue University
Share
Details
Last Updated Dec 19, 2024 Related Terms
Blogs Explore More
3 min read Sols 4396-4397: Roving in a Martian Wonderland
Article
2 days ago
2 min read Sols 4393-4395: Weekend Work at the Base of Texoli Butte
Article
3 days ago
3 min read Sols 4391-4392: Rounding the Bend
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Perseverance Mars rover used its right-front navigation camera to capture this first view over the rim of Jezero Crater on Dec. 10, 2024, the 1,354th Martian day, or sol, of the mission. The camera is facing west from a location nicknamed “Lookout Hill.”NASA/JPL-Caltech NASA’s Perseverance Mars rover captured this scene showing the slippery terrain that’s made its climb up to the rim of Jezero Crater challenging. Rover tracks can be seen trailing off into the distance, back toward the crater’s floor.NASA/JPL-Caltech The road ahead will be even more scientifically intriguing, and probably somewhat easier-going, now that the six-wheeler has completed its long climb to the top.
NASA’s Perseverance Mars rover has crested the top of Jezero Crater’s rim at a location the science team calls “Lookout Hill” and rolling toward its first science stop after the monthslong climb. The rover made the ascent in order to explore a region of Mars unlike anywhere it has investigated before.
Taking about 3½ months and ascending 1,640 vertical feet (500 vertical meters), the rover climbed 20% grades, making stops along the way for science observations. Perseverance’s science team shared some of their work and future plans at a media briefing held Thursday, Dec. 12, in Washington at the American Geophysical Union’s annual meeting, the country’s largest gathering of Earth and space scientists.
“During the Jezero Crater rim climb, our rover drivers have done an amazing job negotiating some of the toughest terrain we’ve encountered since landing,” said Steven Lee, deputy project manager for Perseverance at NASA’s Jet Propulsion Laboratory in Southern California. “They developed innovative approaches to overcome these challenges — even tried driving backward to see if it would help — and the rover has come through it all like a champ. Perseverance is ‘go’ for everything the science team wants to throw at it during this next science campaign.”
A scan across a panorama captured by NASA’s Perseverance Mars rover shows the steepness of the terrain leading to the rim of Jezero Crater. The rover’s Mastcam-Z camera system took the images that make up this view on Dec. 5. NASA/JPL-Caltech/ASU/MSSS Since landing at Jezero in February 2021, Perseverance has completed four science campaigns: the “Crater Floor,” “Fan Front,” “Upper Fan,” and “Margin Unit.” The science team is calling Perseverance’s fifth campaign the “Northern Rim” because its route covers the northern part of the southwestern section of Jezero’s rim. Over the first year of the Northern Rim campaign, the rover is expected to visit as many as four sites of geologic interest, take several samples, and drive about 4 miles (6.4 kilometers).
“The Northern Rim campaign brings us completely new scientific riches as Perseverance roves into fundamentally new geology,” said Ken Farley, project scientist for Perseverance at Caltech in Pasadena. “It marks our transition from rocks that partially filled Jezero Crater when it was formed by a massive impact about 3.9 billion years ago to rocks from deep down inside Mars that were thrown upward to form the crater rim after impact.”
This animation shows the position of NASA’s Perseverance Mars rover as of Dec. 4, 2024, the 1,347th Martian day, or sol, of the mission, along with the proposed route of the mission’s fifth science campaign, dubbed Northern Rim, over the next several years. NASA/JPL-Caltech/ESA/University of Arizona “These rocks represent pieces of early Martian crust and are among the oldest rocks found anywhere in the solar system. Investigating them could help us understand what Mars — and our own planet — may have looked like in the beginning,” Farley added.
First Stop: ‘Witch Hazel Hill’
With Lookout Hill in its rearview mirror, Perseverance is headed to a scientifically significant rocky outcrop about 1,500 feet (450 meters) down the other side of the rim that the science team calls “Witch Hazel Hill.”
“The campaign starts off with a bang because Witch Hazel Hill represents over 330 feet of layered outcrop, where each layer is like a page in the book of Martian history. As we drive down the hill, we will be going back in time, investigating the ancient environments of Mars recorded in the crater rim,” said Candice Bedford, a Perseverance scientist from Purdue University in West Layfette, Indiana. “Then, after a steep descent, we take our first turns of the wheel away from the crater rim toward ‘Lac de Charmes,’ about 2 miles south.”
Lac de Charmes intrigues the science team because, being located on the plains beyond the rim, it is less likely to have been significantly affected by the formation of Jezero Crater.
After leaving Lac de Charmes, the rover will traverse about a mile (1.6 kilometers) back to the rim to investigate a stunning outcrop of large blocks known as megabreccia. These blocks may represent ancient bedrock broken up during the Isidis impact, a planet-altering event that likely excavated deep into the Martian crust as it created an impact basin some 745 miles (1,200 kilometers) wide, 3.9 billion years in the past.
More About Perseverance
A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
For more about Perseverance:
https://science.nasa.gov/mission/mars-2020-perseverance
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-174
Share
Details
Last Updated Dec 12, 2024 Related Terms
Perseverance (Rover) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Explore More
5 min read NASA’s Juno Mission Uncovers Heart of Jovian Moon’s Volcanic Rage
Article 21 mins ago 5 min read NASA-DOD Study: Saltwater to Widely Taint Coastal Groundwater by 2100
Article 22 hours ago 4 min read NASA Study: Crops, Forests Responding to Changing Rainfall Patterns
Earth’s rainy days are changing: They’re becoming less frequent, but more intense. Vegetation is responding.
Article 22 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By USH
Throughout the years, reports of alien abductions have emerged from all corners of the globe.
An alien abduction is generally described as an event in which individuals report being taken against their will by extraterrestrial beings, often undergoing various forms of physical and psychological experimentation.
Some argue that these experiences could simply reflect the subconscious mind at work or suggest that the abductees may have unknowingly been subjects of classified military experiments. Nonetheless, many abductees share accounts with such remarkable detail and consistency that some researchers feel the phenomenon deserves serious consideration.
Over time, I’ve shared numerous articles on cases of alleged alien abductions, which you can explore under the "alien abduction" tag below the article.
Here are two more intriguing cases in which abductees recount their experiences in vivid detail, prompting us to seriously consider the possibility that people may actually be taken by aliens.
The Betty Andreasson Alien Abduction: A Strange Encounter in 1967
One of the most detailed and haunting accounts of alien abduction began on January 25, 1967, in South Ashburnham, Massachusetts. That evening, Betty Andreasson’s family experienced a power outage, followed by an eerie red light outside. Peering out, Betty’s father saw five strange beings approaching who soon entered the house, seemingly passing through solid walls. They communicated telepathically and temporarily froze the family in place.
These beings had distinctive appearances, with pear-shaped heads, wide eyes, and a calm, almost friendly aura. Betty was led to a spacecraft in her backyard and taken aboard, where she underwent strange tests and experienced an otherworldly vision. Hours later, she was returned home, and the aliens left her family unharmed. Initially, Betty viewed her experience through a religious lens, but over time, she came to see it as an alien encounter.
Years later, her story caught the attention of Dr. J. Allen Hynek, a leading UFO researcher. Under hypnosis, Betty’s fragmented memories resurfaced, revealing consistent details corroborated by her daughter, who had also been briefly unfrozen by the beings. After extensive testing and interviews, investigators concluded that Betty was credible and sincerely believed in what she described. The Betty Andreasson abduction remains one of the most compelling cases in UFO lore.
The 1974 Medicine Bow National Forest Abduction: Carl Higdon's Astonishing Encounter
Carl Higdon's hunting trip to Wyoming’s Medicine Bow National Forest in October 1974 took a surreal turn when he experienced one of the most bizarre UFO abduction cases on record. Aiming at an elk, Higdon was stunned to see his bullet slow mid-air and drop, seemingly defying physics. Moments later, he noticed an unusual figure—a tall being in a black jumpsuit with rod-like appendages instead of hands—who offered him pills, claiming that one would sustain him for days.
Higdon, inexplicably compliant, swallowed a pill and suddenly found himself in a transparent structure with two more beings and five frozen elk. He was told they were traveling 163,000 light-years away to the aliens' home planet, which he described as filled with towering structures and an intensely bright sun.
Two and a half hours later, Higdon was back in Medicine Bow, disoriented and missing his elk. Later medical tests revealed inexplicably high vitamin levels and the disappearance of old lung scars. Adding credibility to his story, other witnesses reported seeing strange lights in the area. Higdon’s experience remains a mysterious case.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.