Jump to content

Electronic Book for Students with Visual Impairments Reaches for the Stars


HubbleSite

Recommended Posts

low_keystone.png

This huge Hubble Space Telescope mosaic, spanning a width of 600 light-years, shows a star factory of more the 800,000 stars being born. The stars are embedded inside the Tarantula Nebula, a vibrant region of star birth that resides 170,000 light-years away in the Large Magellanic Cloud, a small, satellite galaxy of our Milky Way. Hubble's near-infrared sensitivity allows astronomers to see behind clouds of dust in the nebula to unveil where the newborn stars are clustered.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On Nov. 6, 2024, NASA Night brought cosmic excitement to the Toyota Center, where Johnson Space Center employees joined 16,208 fans who interacted with NASA as they watched the Houston Rockets claim victory over the San Antonio Spurs. 

      Energy soared as International Space Station Program Manager Dana Weigel stepped up to take the first shot. 
      International Space Station Program Manager Dana Weigel takes the first shot on Nov. 6, 2024, as the Houston Rockets go up against the San Antonio Spurs at Toyota Center.NASA/Helen Arase Vargas The ceremonial first shot also gave back to the community, with Rockets owner Tilman Fertitta donating $1,000 to the Clutch City Foundation to support underserved youth through education, sports, and disaster relief. 

      Throughout the game, Johnson employees kept the crowd engaged with NASA trivia, creating a “launch countdown” energy that had fans cheering. The arena lit up as Adam Savage narrated a video showcasing the International Space Station’s groundbreaking contributions to science. From unlocking discoveries impossible on Earth to testing critical technologies for our return to the Moon, the orbiting laboratory plays a vital role in advancing medical and social breakthroughs that enhance life on our planet.  

      The Artemis II crew also appeared on the jumbotron, reminding everyone of NASA’s mission to establish a long-term presence on the Moon for scientific discovery, economic benefits, and to inspire a new generation of explorers. 
      Dana Weigel, center, shows off a Rockets jersey on the court with Rockets mascot Clutch, left, and NASA mascot Cosmo.NASA/Helen Arase Vargas  In the Sky Court area of the stadium concourse, Johnson volunteers held “mission control” with an interactive exhibit that drew fans in like a gravitational pull. From exploring a Space Launch System model and handling a spacesuit helmet and glove to touching a 3.4-billion-year-old Moon rock collected during Apollo 17, NASA’s booth offered attendees a glimpse into space exploration. 

      Visitors had the chance to ask questions and bring home mission pins, stickers, and hands-on activities, provided by the International Space Station Program and the Artemis campaign. Seventy-five “Lucky Row” fans also received bags filled with NASA outreach materials, courtesy of the Johnson Public Engagement team. 
      NASA’s Johnson Space Center volunteers connect with fans at the game through an interactive exhibit.NASA The Orion Flight Simulator, with its realistic switches and displays, provided an immersive experience that allowed fans to dock the Orion spacecraft to humanity’s first lunar space station, Gateway.  

      More than 600 fans eagerly lined up to experience NASA’s mobile exhibit trailer in the Toyota Center parking lot—drawing lines as long as those at the box office. 
      Fans engage with the Orion Flight Simulator at NASA’s booth. NASA/Helen Arase Vargas Fans also tested their skills with a crew assembly activity focused on science, technology, engineering, and mathematics, simulating the challenges astronauts face in orbit. NASA’s inflatable mascot, Cosmo, joined the action on the court, posing for photos and adding galactic fun to events like the T-shirt giveaway. 
      The Houston Rockets mascot Clutch and NASA mascot Cosmo team up on the court at Toyota Center in Houston.NASA/Helen Arase Vargas  NASA’s presence brought together the excitement of sports with the wonder of space exploration, inspiring fans to keep shooting for the stars. 

      View more images from the event below.  
      View the full article
    • By NASA
      5 min read
      NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode
      After two decades in space, NASA’s Neil Gehrels Swift Observatory is performing better than ever thanks to a new operational strategy implemented earlier this year. The spacecraft has made great scientific strides in the years since scientists dreamed up a new way to explore gamma-ray bursts, the most powerful explosions in the universe.
      “The idea for Swift was born during a meeting in a hotel basement in Estes Park, Colorado, in the middle of a conference,” said John Nousek, the Swift mission director at Pennsylvania State University in State College. “A bunch of astrophysicists got together to brainstorm a mission that could help us solve the problem of gamma-ray bursts, which were a very big mystery at the time.”
      Watch to learn how NASA’s Neil Gehrels Swift Observatory got its name.
      NASA’s Goddard Space Flight Center Gamma-ray bursts occur all over the sky without warning, with about one a day detected on average. Astronomers generally divide these bursts into two categories. Long bursts produce an initial pulse of gamma rays for two seconds or more and occur when the cores of massive stars collapse to form black holes. Short bursts last less than two seconds and are caused by the mergers of dense objects like neutron stars.
      But in 1997, at the time of that basement meeting, the science community disagreed over the origin models for these events. Astronomers needed a satellite that could move quickly to locate them and move to point additional instruments at their positions.
      What developed was Swift, which launched Nov. 20, 2004, from Complex 17A at what is now Cape Canaveral Space Force Station in Florida. Originally called the Swift Observatory for its ability to quickly point at cosmic events, the mission team renamed the spacecraft in 2018 after its first principal investigator Neil Gehrels.
      Swift uses several methods for orienting and stabilizing itself in space to study gamma-ray bursts.
      Sensors that detect the Sun’s location and the direction of Earth’s magnetic field provide the spacecraft with a general sense of its location. Then, a device called a star tracker looks at stars and tells the spacecraft how to maneuver to keep the observatory precisely pointed at the same position during long observations.
      Swift uses three spinning gyroscopes, or gyros, to carry out those moves along three axes. The gyros were designed to align at right angles to each other, but once in orbit the mission team discovered they were slightly misaligned. The flight operations team developed a strategy where one of the gyros worked to correct the misalignment while the other two pointed Swift to achieve its science goals.
      The team wanted to be ready in case one of the gyros failed, however, so in 2009 they developed a plan to operate Swift using just two.
      Swift orbits above Earth in this artist’s concept. NASA’s Goddard Space Flight Center Conceptual Image Lab Any change to the way a telescope operates once in space carries risk, however. Since Swift was working well, the team sat on their plan for 15 years.
      Then, in July 2023, one of Swift’s gyros began working improperly. Because the telescope couldn’t hold its pointing position accurately, observations got progressively blurrier until the gyro failed entirely in March 2024.
      “Because we already had the shift to two gyros planned out, we were able to quickly and thoroughly test the procedure here on the ground before implementing it on the spacecraft,” said Mark Hilliard, Swift’s flight operations team lead at Omitron, Inc. and Penn State. “Actually, scientists have commented that the accuracy of Swift’s pointing is now better than it was since launch, which is really encouraging.”
      For the last 20 years, Swift has contributed to groundbreaking results — not only for gamma-ray bursts but also for black holes, stars, comets, and other cosmic objects.
      “After all this time, Swift remains a crucial part of NASA’s fleet,” said S. Bradley Cenko, Swift’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The satellite’s abilities have helped pioneer a new era of astrophysics called multimessenger astronomy, which is giving us a more well-rounded view of how the universe works. We’re looking forward to all Swift has left to teach us.”
      Swift is a key part of NASA’s strategy to look for fleeting and unpredictable changes in the sky with a variety of telescopes that use different methods of studying the cosmos.
      Goddard manages the Swift mission in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico, and Northrop Grumman Space Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory in Italy, and the Italian Space Agency.

      Download high-resolution images on NASA’s Scientific Visualization Studio

      By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated Nov 20, 2024 Editor Jeanette Kazmierczak Location Goddard Space Flight Center Related Terms
      Astrophysics Gamma-Ray Bursts Goddard Space Flight Center Neil Gehrels Swift Observatory The Universe View the full article
    • By NASA
      (Oct. 25, 2024) — NASA astronaut and Expedition 72 Commander Suni Williams is pictured at the galley inside the International Space Station’s Unity module at the beginning of her day.Credit: NASA Students from Colorado will have the opportunity to hear NASA astronauts Nick Hague and Suni Williams answer their prerecorded questions aboard the International Space Station on Thursday, Nov. 14.
      Watch the 20-minute space-to-Earth call at 1 p.m. EST on NASA+. Learn how to watch NASA content on various platforms, including social media.
      The JEKL Institute for Global Equity and Access, in partnership with the Denver Museum of Nature and Science, will host students from the Denver School of Science and Technology for the event. Students are building CubeSat emulators to launch on high-altitude balloons, and their work will drive their questions with crew.
      Media interested in covering the event must RSVP by 5 p.m., Wednesday, Nov. 13, to Daniela Di Napoli at: daniela.dinapoli@scienceandtech.org or 832-656-5231.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Nov 12, 2024 EditorTiernan P. DoyleLocationNASA Headquarters Related Terms
      International Space Station (ISS) Astronauts Communicating and Navigating with Missions Humans in Space ISS Research Johnson Space Center Near Space Network Space Communications & Navigation Program Sunita L. Williams View the full article
    • By NASA
      Twelve-year-old, Aadya Karthik of Seattle, Washington; nine-year-old, Rainie Lin of Lexington, Kentucky; and eighteen-year-old, Thomas Lui, winners of the 2023-2024 Power to Explore Student Writing Challenge observe testing at a NASA Glenn cleanroom during their prize trip to Cleveland. Credit: NASA NASA’s fourth annual Power to Explore Student Challenge kicked off November 7, 2024. The science, engineering, technology, and mathematics (STEM) writing challenge invites kindergarten through 12th grade students in the United States to learn about radioisotope power systems, a type of nuclear battery integral to many of NASA’s far-reaching space missions.
      Students are invited to write an essay about a new nuclear-powered mission to any moon in the solar system they choose. Submissions are due Jan. 31, 2025.
      With freezing temperatures, long nights, and deep craters that never see sunlight on many of these moons, including our own, missions to them could use a special kind of power: radioisotope power systems. These power systems have helped NASA explore the harshest, darkest, and dustiest parts of our solar system and enabled spacecraft to study its many moons.
      “Sending spacecraft into space is hard, and it’s even harder sending them to the extreme environments surrounding the diverse moons in our solar system,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “NASA’s Power to Explore Student Challenge provides the incredible opportunity for our next generation – our future explorers – to design their own daring missions using science, technology, engineering, and mathematics to explore space and discover new science for the benefit of all, while also revealing incredible creative power within themselves. We cannot wait to see what the students dream up!”
      Entries should detail where students would go, what they would explore, and how they would use radioisotope power systems to achieve mission success in a dusty, dark, or far away moon destination.
      Judges will review entries in three grade-level categories: K-4, 5-8, and 9-12. Student entries are limited to 275 words and should address the mission destination, mission goals, and describe one of the student’s unique powers that will help the mission. 
      One grand prize winner from each grade category will receive a trip for two to NASA’s Glenn Research Center in Cleveland to learn about the people and technologies that enable NASA missions. Every student who submits an entry will receive a digital certificate and an invitation to a virtual event with NASA experts where they’ll learn about what powers the NASA workforce to dream big and explore.
      Judges Needed
      NASA and Future Engineers are seeking volunteers to help judge the thousands of contest entries anticipated submitted from around the country. Interested U.S. residents older than 18 can offer to volunteer approximately three hours to review submissions should register to judge at the Future Engineers website.
      The Power to Explore Student Challenge is funded by the NASA Science Mission Directorate’s Radioisotope Power Systems Program Office and managed and administered by Future Engineers under the direction of the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
      To learn more about the challenge, visit:
      https://www.nasa.gov/power-to-explore
      -end-
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov


      Kristin Jansen
      Glenn Research Center, Cleveland
      216-296-2203
      kristin.m.jansen@nasa.gov
      Share
      Details
      Last Updated Nov 07, 2024 LocationNASA Headquarters Related Terms
      Opportunities For Students to Get Involved Science Mission Directorate STEM Engagement at NASA View the full article
    • By NASA
      Born and raised in Mexico City, Carlos Fontanot has dedicated 34 years to NASA. He supports the International Space Station Mission Integration and Operations Office, ensuring that high-quality imagery enhances mission objectives and operations.  

      Fontanot is known for conceiving and leading the High Definition Earth Viewing (HDEV) project, which has brought stunning live visuals of Earth to millions around the globe. As he approaches his well-deserved retirement, we are excited to spotlight Fontanot’s remarkable career, celebrating his contributions to NASA and the lasting impact he has made on the agency’s mission to share the wonders of space. 

      Carlos Fontanot (left) receives the Great Minds in STEM Lifetime Achievement Award from Joel Montelbano, NASA at the Hispanic Engineer National Achievement Award Conference. What does your position entail? 
      Integrate all aspects of station imagery, from initial requirements to acquisition, processing, cataloging, archiving, and distribution of station imagery to multiple stakeholders, our clients.  

      How would you describe your job to family or friends who may not be as familiar with NASA? 
      I manage an array of television and digital still imagery cameras on the International Space Station. Each day we receive eight channels of high definition (HD) video and thousands of digital images that allow the ground team to see what the crew is doing in their daily lives and as part of scientific activities. In today’s age of social media and high-quality imagery, having these images is crucial for effectively conveying the station narrative. 

      I also chair the International Space Station’s Multilateral Imagery Working Group. Our team captures and processes the video and still images on a large server, where they are cataloged, archived, and distributed to our clients. Additionally, we are responsible for the photo and TV hardware aboard the space station and provide training to astronauts on how to use this equipment. 

      Carlos Fontanot with Liam Kennedy at the International Space Station Research and Development Conference. How do you feel the imagery and public affairs teams contribute to the overall mission of NASA? 
      Imagery is critical for communication in today’s visual environment. If people can’t see it, they won’t believe it! Effective communication through multimedia and pointed messaging is essential for securing continued support for NASA missions from both Congress and the public. 

      What was your path to NASA? 
      I was always interested in photography and film, so I studied radio, TV, and film in college. My first job after graduation was with a local TV station, and I also managed a media center for a multinational company. Then, I joined Johnson Space Center’s television and film division, where I managed space shuttle and institutional imagery. 

      Once at Johnson, I worked in the Office of Public Affairs as the audiovisual manager and served for two years as the public affairs officer in Moscow at the start of the International Space Station Program, including the launch of the first station crew. 

      What advice would you give to young individuals aspiring to work in the space industry or at NASA? 
      NASA is not just about astronauts, flight controllers, and engineers—there are countless disciplines and job opportunities here. Take imagery, for example: in today’s digital age, having the highest resolution imagery of our incredible orbiting laboratory environment and our home planet is essential. 

      For those aspiring to join the NASA team, I encourage you be open-minded and a team player. We need well-educated and talented individuals from diverse backgrounds across all disciplines to help us achieve our goals and explore the wonders of space. 

      Is there a space figure you’ve looked up to? 
      The space figure I will always remember and look up to is John Glenn. I had the fortune and privilege to meet him during his training. He was an extraordinary human being with incredibly high goals throughout his career. 

      I was assigned to escort John Glenn and the STS-95 crew on a two-week official visit to several European countries. John was by far the most inspiring and dedicated crew member that I’d ever met. He was always ready and willing to engage with dignitaries, politicians, leaders, journalists, and the public to share the NASA story and promote future programs to gain support from various governments and the public. 

      What do you love sharing about the International Space Station to general audiences? 
      I love sharing the wonders of life in space, especially the unique and breathtaking views of our planet Earth that can only be appreciated from space. I like to tell audiences about the observations and inspiration our astronauts share upon returning from their missions. I emphasize our thin and fragile atmosphere that sustains life as we know it, the beauty of Earth’s deserts, mountains, jungles, and oceans, and most importantly, the absence of borders. There’s always a profound realization that we are all human and that Earth belongs to all of us. 

      How has the technology for capturing images and video in space evolved over the years? 
      There was no digital imagery when I started my professional career. Photographs were taken on film that had to be processed in a dark room using chemicals to produce images. Video was recorded on two-inch magnetic tape at low resolution. We even flew film on our spacecraft that had to be brought back and processed on the ground. 
      Today, in the digital world, images can be streamed directly from our spacecraft and almost instantaneously shared with the entire globe. The evolution of technology has truly transformed how we capture and share the wonders of space! 
      Carlos Fontanot (left) sets up a NASA imagery exhibit in the Houston Downtown Tunnel System. What are some of the key projects you’ve worked on during your time at NASA? What have been your favorites? 
      During my time at NASA, I co-led the High Definition Earth Viewing (HDEV) project, which deployed four Earth-viewing cameras on the International Space Station, reaching over 318 million viewers globally. I also contributed to designing Johnson’s new PAO studio, collaborated on upgrading the space station’s downlink system from four standard-definition to eight high-definition channels, and advanced television technology, including the first HD and later UHD live downlinks from the station. These projects have allowed me to enhance NASA’s capacity for sharing space imagery with the world. 

      What are your plans for retirement, and how do you hope to stay connected to the space community? 
      I plan to travel across the U.S. in a travel trailer with my wife and dog and enjoying my hobbies I will now have time for, such as photography and spending quality time with my family.

      Carlos and Pat Fontanot at the Grand Canyon South Rim in Arizona.  How do you believe NASA’s imagery can continue to inspire future generations? 
      Astronaut John Young would come to the photo lab after every shuttle mission to review the film shot onboard. He would say, “A picture is worth a thousand words.” What can inspire more than a breathtaking image of a sunset captured from space or the aurora borealis over the polar regions? 

      What legacy do you hope to leave behind after your time at NASA? 
      I hope to leave behind a legacy of passion and dedication to acquiring and making pristine, high-resolution imagery from space available for the public to enjoy. 

      If you could have dinner with any astronaut, past or present, who would it be? 
      I would choose John Young. He flew during both the Apollo and shuttle eras, was an imagery expert, and had a deep understanding of the space station. 

      Favorite space movie? 
      Interstellar   
      NASA Worm or Meatball logo? 
      Worm   
      *** 
      Every day we are conducting exciting research aboard our orbiting laboratory that will help us explore farther into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It is a curated hub of space station research and digital media from Johnson and other centers and space agencies. 

      Sign up for our weekly email newsletter to get the updates delivered directly to you. 

      Follow updates on social media at @ISS_Research on X, and on the space station accounts on Facebook and Instagram. 
      View the full article
  • Check out these Videos

×
×
  • Create New...