Members Can Post Anonymously On This Site
NASA Awards Contract for Acquisition of Gaseous, Liquid Helium
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Latha Balijepalle, a senior database administrator at NASA Ames, encourages others to take a risk and pursue challenges in their work, like trying something new that might open doors to a new opportunity.NASA/Brandon Torres Navarrete When Madhavi Latha Balijepalle noticed that her morning commute took her past NASA Ames Research Center in California’s Silicon Valley, she set a new career goal for herself: working for NASA.
“I started manifesting it, thinking about it every day as I drove by. When I started looking for a new job, I saw an opening and decided to apply,” said Balijepalle, a senior database administrator working at the Airspace Operations Laboratory (AOL) at NASA Ames.
Eight and a half years later, she supports the researchers and developers who research next-generation solutions to advance aircraft technology and air traffic management.
A journey into the unknown
Balijepalle’s journey to NASA started thousands of miles away. She grew up in a small town in southern India, studying electrical engineering in college and establishing a career in information technology, working in C++ and Python.
When her husband found a job opportunity in the United States, Balijepalle’s life took an unexpected turn.
“I never planned to move to America,” said Balijepalle. “It was not easy to come here, even though my husband had a job. I stayed in India for almost nine months, before he found a different job that would help us with my visa and documentation.”
After settling into her new country, growing her family, and developing in her new career, Balijepalle began to ponder her dream job at NASA. She and her younger daughter, a fellow space fan, enjoyed talking about the agency’s work in space, and when a Linux administrator position opened up, she jumped at the chance.
A dream job becomes reality
At the lab, Balijepalle was initially responsible for managing the lab’s Linux servers and applications. Today, she also supports researchers and developers with development, automation, and deployment of their work.
“Latha is the lifeblood of the lab,” said Jeff Homola, co-leader of the Airborne Operations Laboratory at NASA Ames. “Without her unwavering dedication to making sure our systems are safe, secure, up to date, and running smoothly, we would not be able to do what we do in the lab.”
One of Balijepalle’s proudest achievements during her NASA career is her language skills. Growing up, she spoke Telugu and Hindi, and learned English, but communication was still a challenge when she arrived at NASA.
“I spoke English when I came to America, but not as well, and not using the technical language we use at NASA,” said Balijepalle. “I’m proud that I’ve improved my communications skills.”
“Step outside your comfort zone”
Looking back on the commute that changed her life, Balijepalle says she owes it all to being up to the challenge.
“I wasn’t a risk taker, I didn’t think about stepping outside my comfort zone, but as I drove by NASA Ames each day, I started to think about astronauts. They step outside their comfort zone and leave the planet, so maybe I could take a risk, too.”
For those who also dream of working at NASA one day, Balijepalle has some advice: try doing it her way.
“Start thinking about it and manifesting your dream. Maybe it will come true, and maybe it won’t, but you might as well try.”
Share
Details
Last Updated Dec 23, 2024 Related Terms
Ames Research Center General Explore More
16 min read NASA Ames Astrogram – December 2024
Article 3 days ago 5 min read NASA’s Ames Research Center Celebrates 85 Years of Innovation
Article 3 days ago 3 min read NASA’s Webb Reveals Smallest Asteroids Yet Found in Main Asteroid Belt
Article 3 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is helping the Artemis Generation learn how to power space dreams with an interactive exhibit at INFINITY Science Center.
The engine test simulator exhibit at the official visitor center of NASA Stennis provides the chance to experience the thrill of being a NASA test engineer by guiding an RS-25 engine through a simulated hot fire test.
“It is an exhilarating opportunity to feel what it is like to be a NASA engineer, responsible for making sure the engine is safely tested for launch,” said Chris Barnett-Woods, a NASA engineer that helped develop the software for the exhibit.
Sitting at a console mirroring the actual NASA Stennis Test Control Center, users are immersed in the complex process of engine testing. The exhibit uses cutting-edge software and visual displays to teach participants how to manage liquid oxygen and liquid hydrogen propellants, and other essential elements during a hot fire.
A pair of young visitors to INFINITY Science Center carry out the steps of a simulated RS-25 engine hot fire on Dec. 19. The updated engine test simulator exhibit provided by NASA’s Stennis Space Center takes users through the hot fire process just as real engineers do at NASA Stennis.NASA/Danny Nowlin INFINITY Science Center, the official visitor center for NASA’s Stennis Space Center, has unveiled a new interactive simulator exhibit that allows visitors to become the test conductor for an RS-25 engine hot fire. NASA/Danny Nowlin Users follow step-by-step instructions that include pressing buttons, managing propellant tanks, and even closing the flare stack, just as real engineers do at NASA Stennis. Once the test is complete, they are congratulated for successfully conducting their own rocket engine hot fire.
The interactive exhibit is not just about pushing buttons. It is packed with interesting facts about the RS-25 engine, which helps power NASA’s Artemis missions as the agency explores secrets of the universe for the benefit of all. Visitors also can view real hot fires conducted at NASA Stennis from multiple angles, deepening their understanding of rocket propulsion testing and NASA’s journey back to the Moon and beyond.
NASA is currently preparing for the Artemis II mission, the first crewed flight test of the agency’s powerful SLS (Space Launch System) rocket and the Orion spacecraft around the Moon.
The first four Artemis missions are using modified space shuttle main engines tested at NASA Stennis. The center also achieved a testing milestone last April for engines to power future Artemis missions. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power NASA’s SLS rocket, producing more than 8.8 million pounds of total combined thrust at liftoff.
The revitalized exhibit, previously used when the visitor center was located onsite, represents a collaborative effort. It started as an intern project in the summer of 2023 before evolving into a full-scale experience. Engineers built on the initial concept, integrating carpentry, audio, and video to create the seamless experience to educate and inspire.
The best part might be that visitors to INFINITY Science Center can repeat the simulation as many times as they like, gaining confidence and learning more with each attempt.
“This exhibit was a favorite in the past, and with its new upgrades, the engine test simulator is poised to capture the imaginations of the Artemis Generation at INFINITY Science Center,” said NASA Public Affairs Specialist Samone Wilson. “This is one exhibit you will not want to miss.” INFINITY Science Center is located at 1 Discovery Circle, Pearlington, Mississippi. For hours of operation and admission information, please visit www.visitinfinity.com.
Share
Details
Last Updated Dec 20, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center View the full article
-
By NASA
NASA has selected multiple companies to expand the agency’s Near Space Network’s commercial direct-to-Earth capabilities services, which is a mission-critical communication capability that allows spacecraft to transmit data directly to ground stations on Earth.
The work will be awarded under new Near Space Network services contracts that are firm-fixed-price, indefinite-delivery/indefinite-quantity contracts. Project timelines span from February 2025 to September 2029, with an additional five-year option period that could extend a contract through Sept. 30, 2034. The cumulative maximum value of all Near Space Network Services contracts is $4.82 billion.
Some companies received multiple task orders for subcategories identified in their contracts. Awards are as follows:
Intuitive Machines of Houston will receive two task order awards on its contract for Subcategory 1.2 GEO to Cislunar Direct to Earth (DTE) Services and Subcategory 1.3 xCislunar DTE Services to support NASA’s Lunar Exploration Ground Segment, providing additional capacity to alleviate demand on the Deep Space Network and to meet the mission requirements for unique, highly elliptical orbits. The company also previously received a task order award for Subcategory 2.2 GEO to Cislunar Relay Services. Kongsberg Satellite Services of Tromsø, Norway, will receive two task order awards on its contract for Subcategory 1.1 Earth Proximity DTE and Subcategory 1.2 to support science missions in low Earth orbit and NASA’s Lunar Exploration Ground Segment, providing additional capacity to alleviate demand on the Deep Space Network. SSC Space U.S. Inc. of Horsham, Pennsylvania, will receive two task order awards on its contract for Subcategories 1.1 and 1.3 to support science missions in low Earth orbit and to meet the mission requirements for unique, highly elliptical orbits. Viasat, Inc. of Duluth, Georgia, will be awarded a task order on its contract for Subcategory 1.1 to support science missions in low Earth orbit. The Near Space Network’s direct-to-Earth capability supports many of NASA’s missions ranging from climate studies on Earth to research on celestial objects. It also will play a role in NASA’s Artemis campaign, which calls for long-term exploration of the Moon.
NASA’s goal is to provide users with communication and navigation services that are secure, reliable, and affordable, so that all NASA users receive the services required by their mission within their latency, accuracy, and availability requirements.
These awards demonstrate NASA’s ongoing commitment to fostering strong partnerships with the commercial space sector, which plays an essential role in delivering the communications infrastructure critical to the agency’s science and exploration missions.
As part of the agency’s SCaN (Space Communications and Navigation) Program, teams at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will carry out the work of the Near Space Network. The Near Space Network provides missions out to 1.2 million miles (2 million kilometers) with communications and navigation services, enabling spacecraft to exchange critical data with mission operators on Earth. Using space relays in geosynchronous orbit and a global system of government and commercial direct-to-Earth antennas on Earth, the network brings down terabytes of data each day.
Learn more about NASA’s Near Space Network:
https://www.nasa.gov/near-space-network
-end-
Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov
Jeremy Eggers
Goddard Space Flight Center, Greenbelt, Maryland
757-824-2958
jeremy.l.eggers@nasa.gov
View the full article
-
By NASA
NASA’s Dawn spacecraft captured this image of Vesta as it left the giant asteroid’s orbit in 2012. The framing camera was looking down at the north pole, which is in the middle of the image.NASA/JPL-Caltech/UCLA/MPS/DLR/IDA Known as flow formations, these channels could be etched on bodies that would seem inhospitable to liquid because they are exposed to the extreme vacuum conditions of space.
Pocked with craters, the surfaces of many celestial bodies in our solar system provide clear evidence of a 4.6-billion-year battering by meteoroids and other space debris. But on some worlds, including the giant asteroid Vesta that NASA’s Dawn mission explored, the surfaces also contain deep channels, or gullies, whose origins are not fully understood.
A prime hypothesis holds that they formed from dry debris flows driven by geophysical processes, such as meteoroid impacts, and changes in temperature due to Sun exposure. A recent NASA-funded study, however, provides some evidence that impacts on Vesta may have triggered a less-obvious geologic process: sudden and brief flows of water that carved gullies and deposited fans of sediment. By using lab equipment to mimic conditions on Vesta, the study, which appeared in Planetary Science Journal, detailed for the first time what the liquid could be made of and how long it would flow before freezing.
Although the existence of frozen brine deposits on Vesta is unconfirmed, scientists have previously hypothesized that meteoroid impacts could have exposed and melted ice that lay under the surface of worlds like Vesta. In that scenario, flows resulting from this process could have etched gullies and other surface features that resemble those on Earth.
To explore potential explanations for deep channels, or gullies, seen on Vesta, scientists used JPL’s Dirty Under-vacuum Simulation Testbed for Icy Environments, or DUSTIE, to simulate conditions on the giant asteroid that would occur after meteoroids strike the surface.NASA/JPL-Caltech But how could airless worlds — celestial bodies without atmospheres and exposed to the intense vacuum of space — host liquids on the surface long enough for them to flow? Such a process would run contrary to the understanding that liquids quickly destabilize in a vacuum, changing to a gas when the pressure drops.
“Not only do impacts trigger a flow of liquid on the surface, the liquids are active long enough to create specific surface features,” said project leader and planetary scientist Jennifer Scully of NASA’s Jet Propulsion Laboratory in Southern California, where the experiments were conducted. “But for how long? Most liquids become unstable quickly on these airless bodies, where the vacuum of space is unyielding.”
The critical component turns out to be sodium chloride — table salt. The experiments found that in conditions like those on Vesta, pure water froze almost instantly, while briny liquids stayed fluid for at least an hour. “That’s long enough to form the flow-associated features identified on Vesta, which were estimated to require up to a half-hour,” said lead author Michael J. Poston of the Southwest Research Institute in San Antonio.
Launched in 2007, the Dawn spacecraft traveled to the main asteroid belt between Mars and Jupiter to orbit Vesta for 14 months and Ceres for almost four years. Before ending in 2018, the mission uncovered evidence that Ceres had been home to a subsurface reservoir of brine and may still be transferring brines from its interior to the surface. The recent research offers insights into processes on Ceres but focuses on Vesta, where ice and salts may produce briny liquid when heated by an impact, scientists said.
Re-creating Vesta
To re-create Vesta-like conditions that would occur after a meteoroid impact, the scientists relied on a test chamber at JPL called the Dirty Under-vacuum Simulation Testbed for Icy Environments, or DUSTIE. By rapidly reducing the air pressure surrounding samples of liquid, they mimicked the environment around fluid that comes to the surface. Exposed to vacuum conditions, pure water froze instantly. But salty fluids hung around longer, continuing to flow before freezing.
The brines they experimented with were a little over an inch (a few centimeters) deep; scientists concluded the flows on Vesta that are yards to tens of yards deep would take even longer to refreeze.
The researchers were also able to re-create the “lids” of frozen material thought to form on brines. Essentially a frozen top layer, the lids stabilize the liquid beneath them, protecting it from being exposed to the vacuum of space — or, in this case the vacuum of the DUSTIE chamber — and helping the liquid flow longer before freezing again.
This phenomenon is similar to how on Earth lava flows farther in lava tubes than when exposed to cool surface temperatures. It also matches up with modeling research conducted around potential mud volcanoes on Mars and volcanoes that may have spewed icy material from volcanoes on Jupiter’s moon Europa.
“Our results contribute to a growing body of work that uses lab experiments to understand how long liquids last on a variety of worlds,” Scully said.
Find more information about NASA’s Dawn mission here:
https://science.nasa.gov/mission/dawn/
News Media Contacts
Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-287-4115
gretchen.p.mccartney@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-178
Share
Details
Last Updated Dec 20, 2024 Related Terms
Dawn Asteroids Ceres Jet Propulsion Laboratory Vesta Explore More
5 min read Avalanches, Icy Explosions, and Dunes: NASA Is Tracking New Year on Mars
Article 1 hour ago 5 min read Cutting-Edge Satellite Tracks Lake Water Levels in Ohio River Basin
Article 3 days ago 5 min read NASA Mars Orbiter Spots Retired InSight Lander to Study Dust Movement
Article 4 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
This article is for students grades 5-8.
The Sun is the star of our solar system. Its gravity holds Earth and our planetary neighbors in its orbit. At 865,000 miles (1.4 million km) in diameter, it’s the largest object in our solar system. On Earth, its influence is felt in our weather, seasons, climate, and more. Let’s learn about our dynamic star and its connections to life on Earth.
What is the Sun, and what is it made of?
The Sun is a yellow dwarf star. It is approximately 4.5 billion years old and is in its “main sequence” phase. This means it is partway through its lifecycle with a few billion more years ahead of it.
The Sun is made of hydrogen and helium gases. At its core, hydrogen is fused to form helium. This nuclear reaction creates the Sun’s heat and light. That energy moves outward through the Sun’s radiative zone and convective zone. It then reaches the Sun’s visible surface and lower atmosphere, called the photosphere. Above the photosphere lies the chromosphere, which forms the Sun’s middle atmosphere, and beyond that is the corona, the Sun’s outermost atmosphere.
The Sun is a yellow dwarf star with a complex series of layers and features.NASA What is the solar cycle?
The Sun goes through a pattern of magnetic activity known as the solar cycle. During each cycle, the Sun experiences a very active period called “solar maximum” and a less active period called “solar minimum.”
During solar maximum, increased magnetic activity creates sunspots. These appear as darker, cooler spots on the Sun’s surface. The more sunspots we can see, the more active the Sun is.
The solar cycle begins at solar minimum, peaks at solar maximum, and then returns to solar minimum. This cycle is driven by the Sun’s magnetic polarity, which flips – north becomes south, and vice versa – every 11 years. It takes two cycles – or 22 years – to complete the full magnetic cycle where the poles return to their original positions.
The Sun’s level of magnetic activity changes throughout its 11-year solar cycle. During each cycle, the Sun experiences a less-active period called “solar minimum” (left) and a very active period called “solar maximum” (right).NASA Wait. The Sun’s magnetic poles can flip??
Yes! Like Earth, the Sun has north and south magnetic poles. But unlike Earth, the Sun’s poles flip regularly. Each 11-year solar cycle is marked by the flipping of the Sun’s poles. The increased magnetic activity during solar maximum makes the north and south poles less defined. As the cycle moves back to solar minimum, the polarization of the poles returns – with flipped polarity.
Unlike Earth, the Sun’s poles regularly flip with each 11-year solar cycle.NASA What is space weather?
Space weather includes phenomena such as solar wind, solar storms, and solar flares. When space weather conditions are calm, there may be little noticeable effect on Earth. But when the Sun is more active, space weather has real impacts on Earth and in space.
Let’s explore these phenomena and how they affect our planet.
Periods of increased solar activity can cause noticeable effects on Earth and in space.NASA What is solar wind?
Solar wind is a stream of charged particles that flow outward from the Sun’s corona. It extends far beyond the orbit of the planets in our solar system. When solar wind reaches Earth, its charged particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles called aurora.
Earth’s magnetic field protects our planet from the charged solar particles of the solar wind.NASA What are solar storms, solar flares, and coronal mass ejections?
The Sun’s magnetic fields are a tangle of constant motion. These fields twist and stretch to the point that they snap and reconnect. When this magnetic reconnection occurs, it releases a burst of energy that can cause a solar storm.
Solar storms can include phenomena such as solar flares or coronal mass ejections. They happen more frequently around the solar maximum of the Sun’s cycle. A solar flare is an intense burst of light and energy from the Sun’s surface. Solar flares tend to happen near sunspots where the Sun’s magnetic fields are strongest. A coronal mass ejection is a massive cloud of material flowing outward from the Sun. These can occur on their own or along with solar flares.
The Sun’s magnetic field is strongest near sunspots. These active regions of the Sun’s surface release energy in the form of solar flares and coronal mass ejections like these.NASA How do these phenomena affect Earth?
When a solar storm erupts towards Earth, our atmosphere and magnetic field protect us from significant harm. However, some impacts are possible, both on Earth and in space. For example, strong solar storms can cause power outages and radio blackouts. GPS signals can be disrupted. Satellite electronics can be affected. And astronauts working outside of the International Space Station could be exposed to dangerous radiation. NASA monitors and forecasts space weather to protect the safety and health of astronauts and spacecraft.
When charged particles from intense solar storms interact with Earth’s magnetic fields, colorful auroras like this one captured in Saskatchewan, Canada, can occur.NASA Learn more about the Sun
NASA’s Parker Solar Probe launched in 2018 on the first-ever mission to fly into the Sun’s corona. Since its first pass through the corona in 2021, every orbit has brought it closer to the Sun. On Dec. 24, 2024, it makes the first of its three final, closest solar approaches of its primary mission. Test your knowledge with NASA’s new quiz, Kahoot! Parker Solar Probe trivia.
Visit these resources for more details about the Sun:
https://science.nasa.gov/sun/facts/ https://spaceplace.nasa.gov/all-about-the-sun/en/ https://science.nasa.gov/exoplanets/stars/ Explore More For Students Grades 5-8 View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.