Jump to content

Recommended Posts

Posted
Webb_s_icy_instrument_reveals_complex_st Image:

These spectacular images feature the spiral galaxy IC 5332, taken by the NASA/ESA Hubble Space Telescope (left) and the NASA/ESA/CSA James Webb Space Telescope (right). The images display the powerful capabilities that both world-leading space telescopes provide, especially when combining their data.

The Webb image shows the spiral galaxy in unprecedented detail thanks to observations from its Mid-InfraRed Instrument (MIRI). IC 5332 lies over 29 million light-years from Earth, and has a diameter of roughly 66 000 light-years, making it a little larger than the Milky Way. It is notable for being almost perfectly face-on with respect to Earth, allowing us to admire the symmetrical sweep of its spiral arms.

MIRI is the only Webb instrument that is sensitive to the mid-infrared region of the electromagnetic spectrum (specifically in the 5 µm – 28 µm wavelength range); Webb’s other instruments all operate in the near-infrared. Contributed under both ESA and NASA leadership, MIRI is the first instrument that delivers mid-infrared images that are sharp enough to be easily matched to Hubble’s view at shorter wavelengths.

One of MIRI’s most remarkable features is that it operates 33 °C below the rest of the observatory at the frosty temperature of –266 °C. That means that MIRI operates in an environment only 7 °C warmer than absolute zero, which is the lowest possible temperature according to the laws of thermodynamics. MIRI requires this frigid environment in order for its highly specialised detectors to function correctly, and it has a dedicated active cooling system to ensure that its detectors are kept at the correct temperature.

It is worth noting just how challenging it is to obtain observations in the mid-infrared region of the electromagnetic spectrum. The mid-infrared is incredibly difficult to observe from Earth as much of it is absorbed by Earth’s atmosphere, and heat from Earth’s atmosphere further complicates things. Hubble could not observe the mid-infrared region as its mirrors were not cool enough, meaning that infrared radiation from the mirrors themselves would have dominated any attempted observations. The extra effort made to ensure that MIRI’s detectors had the freezing environment necessary to operate properly is evident in this stunning image.

This extravagantly detailed mid-infrared image is juxtaposed here with a beautiful ultraviolet and visible-light image of the same galaxy, created using data collected by Hubble’s Wide Field Camera 3 (WFC3). Some differences are immediately obvious. The Hubble image shows dark regions that seem to separate the spiral arms, whereas the Webb image shows more of a continual tangle of structures that echo the spiral arms’ shape. This difference is due to the presence of dusty regions in the galaxy. Ultraviolet and visible light are far more prone to being scattered by interstellar dust than infrared light. Therefore dusty regions can be identified easily in the Hubble image as the darker regions that much of the galaxy’s ultraviolet and visible light has not been able to travel through. Those same dusty regions are no longer dark in the Webb image, however, as the mid-infrared light from the galaxy has been able to pass through them. Different stars are visible in the two images, which can be explained because certain stars shine brighter in the ultraviolet, visible and infrared regimes respectively. The images complement one another in a remarkable way, each telling us more about IC 5332’s structure and composition.

MIRI was contributed by ESA and NASA, with the instrument designed and built by a consortium of nationally funded European Institutes (The MIRI European Consortium) in partnership with JPL and the University of Arizona.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      Some days ago we wrote about recent satellite scans which have revealed massive structures buried up to two kilometers beneath the Giza Plateau, particularly beneath the Pyramid of Khafre. Researchers speculate that these hidden formations may not only contain undiscovered chambers, possibly linked to the legendary Hall of Records but that these subterranean structures could also function similarly to Nikola Tesla's coil, suggesting that they may have once served as colossal power plants, generating and distributing energy on a grand scale. 

      This revelation has reignited interest in the prophecies of Edgar Cayce, often called the "Sleeping Prophet." Cayce predicted the existence of an underground chamber, known as the Hall of Records, containing lost knowledge from Atlantis, hidden beneath the Sphinx. He also spoke of a powerful energy grid, which he believed once existed in the region. 
      In the 1930s, Cayce’s psychic readings described Atlantis as a technologically advanced civilization, (Could it be that the Atlanteans were the previous civilization that was on Earth?) that collapsed around 10,500 BC due to corruption and the misuse of power. According to him, survivors of this catastrophe fled to Egypt, where they shared knowledge of engineering, spirituality, and civilization-building. Cayce suggested that these Atlantean refugees played a pivotal role in constructing the Great Pyramid and the Sphinx shortly after their arrival. 
      Suppose that the Atlanteans indeed contributed to these monumental structures, could they have collaborated not only with the local inhabitants but also with giant humanoids who once roamed the Earth?  Cayce described the Hall of Records as an underground chamber situated between the Sphinx and the Nile River, with its entrance concealed near the Sphinx’s right paw. He claimed the hall contained inscriptions in both Atlantean and Egyptian scripts and was designed in a pyramid-like shape. He further prophesied that its discovery would coincide with a period of global upheaval and transformation. 
      Despite extensive archaeological investigations, definitive proof of the Hall of Records remains elusive. However, as early as the 1990s, ground-penetrating radar detected anomalies and hollow spaces beneath the Sphinx. With advancements in technology and the recent satellite scans, could Cayce's predictions, regarding a powerful energy grid and the Hall of Records containing lost Atlantean knowledge, prove to be true? 
      As scientific inquiry continues, we may be on the verge of uncovering secrets buried deep beneath the pyramids, potentially reshaping our understanding of history. View the full article
    • By NASA
      NASA The instrument enclosure of NASA’s Near-Earth Object Surveyor is prepared for critical environmental tests inside the historic Chamber A at the Space Environment Simulation Laboratory at NASA’s Johnson Space Center in Houston in December 2024. Wrapped in silver thermal blanketing, the 12-foot-long (3.7-meter-long) angular structure was subjected to the frigid, airless conditions that the spacecraft will experience when in deep space. The cavernous thermal-vacuum test facility is famous for testing the Apollo spacecraft that traveled to the Moon in the 1960s and ’70s.
      The instrument enclosure is designed to protect the spacecraft’s infrared telescope while also removing heat from it during operations. After environmental testing was completed, the enclosure returned to NASA’s Jet Propulsion Laboratory in Southern California for further work, after which it will ship to the Space Dynamics Laboratory (SDL) in Logan, Utah, and be joined to the telescope. Both the instrument enclosure and telescope were assembled at JPL.
      As NASA’s first space-based detection mission specifically designed for planetary defense, NEO Surveyor will seek out, measure, and characterize the hardest-to-find asteroids and comets that might pose a hazard to Earth. While many near-Earth objects don’t reflect much visible light, they glow brightly in infrared light due to heating by the Sun. The spacecraft’s telescope, which has an aperture of nearly 20 inches (50 centimeters), features detectors sensitive to two infrared wavelengths in which near-Earth objects re-radiate solar heat.
      More information about NEO Surveyor is available at: https://science.nasa.gov/mission/neo-surveyor/
      Image credit: NASA
      View the full article
    • By NASA
      Explore This Section RPS Home About About RPS About the Program About Plutonium-238 Safety and Reliability For Mission Planners Contact RPS Systems Overview Power Systems Thermal Systems Dynamic Radioisotope Power Missions Overview Timeline News Resources STEM Power to Explore Contest FAQ 4 min read
      NASA Reveals Semifinalists of Power to Explore Challenge
      A word cloud showing “superpowers” of the 45 semifinalists. NASA/David Lam NASA selected 45 student essays as semifinalists of its 2024-2025 Power to Explore Challenge, a national competition for K-12 students featuring the enabling power of radioisotopes. Contestants were challenged to explore how NASA has powered some of its most famous science missions and to dream up how their personal “superpower” would energize their success on their own radioisotope-powered science mission to explore one of the nearly 300 moons of our solar system.
      The competition asked students to learn about radioisotope power systems (RPS), a type of “nuclear battery” that NASA uses to explore the harshest, darkest, and dustiest parts of our solar system. RPS have enabled many spacecraft to explore a variety of these moons, some with active volcanoes, methane lakes, and intricate weather patterns similar to Earth. Many of these moons remain a mystery to us.
      This year’s submissions to NASA’s Power to Explore Challenge were immensely enthralling, and we’re thrilled that the number of entries reached a record high.
      Carl Sandifer II
      Program Manager, NASA Radioisotope Power Systems Program
      In 275 words or less, students wrote about a mission of their own that would use these space power systems to explore any moon in our solar system and described their own power to achieve their mission goals.
      The Power to Explore Challenge offered students the opportunity to learn more about these reliable power systems, celebrate their own strengths, and interact with NASA’s diverse workforce. This year’s contest set a record, receiving 2,051 submitted entries from all 50 states, Guam, U.S. Virgin Islands, American Samoa, Northern Mariana Islands, Puerto Rico, and the Department of Defense Education Activity (DoDEA) Overseas.
      “This year’s submissions to NASA’s Power to Explore Challenge were immensely enthralling, and we’re thrilled that the number of entries reached a record high,” said Carl Sandifer II, program manager of the Radioisotope Power Systems Program at NASA’s Glenn Research Center in Cleveland. “It was particularly interesting to see which moons the students selected for their individual essays, and the mysteries they hope to unravel. Their RPS-powered mission concepts always prove to be innovative, and it’s a joy to learn about their ‘superpowers’ that exemplify their path forward as the next generation of explorers.” 
      Entries were split into three categories: grades K-4, 5-8, and 9-12. Every student who submitted an entry received a digital certificate, and over 4,859 participants who signed up received an invitation to the Power Up with NASA virtual event. Students learned about what powers the NASA workforce utilizes to dream big and work together to explore. Speakers included Carl Sandifer II, Dr. Wanda Peters, NASA’s deputy associate administrator for programs in the Science Mission Directorate and Dr. Zibi Turtle, principal investigator for NASA’s Dragonfly mission from the John Hopkins Applied Physics Laboratory.
      Fifteen national semifinalists in each grade category (45 semifinalists total) have been selected. These participants also will receive a NASA RPS prize pack. Finalists for this challenge will be announced on April 23.
      Grades K-4
      Vihaan Akhoury, Roseland, NJ Ada Brolan, Somerville, MA Ashwin Cohen, Washington D.C Unnathi Chandra Devavarapu, San Marcos, CA Levi Fisher, Portland, OR Tamanna Ghosh, Orlando, FL Ava Goodison, Arnold, MD Anika Lal, Pflugerville, TX Diya Loganathan, Secaucus, NJ Mini M, Ann Arbor, MI Mark Porter, Temple Hills, MD Rohith Thiruppathy, Canton, MI Zachary Tolchin, Guilford CT Kavin Vairavan, West Windsor Township, NJ Terry Xu, Arcadia, CA Grades 5-8
      Chowdhury Wareesha Ali, Solon OH Caydin Brandes, Los Angeles, CA Caleb Braswell, Crestview, FL Lilah Coyan, Spokane, WA Ashwin Dhondi Kubeer, Phoenix, AZ Jonathan Gigi, Cypress, TX Gagan Girish, Portland, OR Maggie Hou, Snohomish, WA Sanjay Koripelli, Louisville, KY Isaiah Muniz, South Orange, NJ Sarabhesh Saravanakumar, Bothell, WA Eliya Schubert, Katonah, NY Gabriel Traska, Fort Woth, TX Jaxon Verbeck, Riggins, ID Krish Vinodhkumar, Monrovia, MD Grades 9-12
      Samaria Berry, Kinder, LA David Cai, Saipan, MP Reggie Castro, Saipan, MP Ryan Danyow, Rutland City, VT Faiz Karim, Jericho, NY Sakethram Kuncha, Chantilly, VA Katerina Morin, Miami, FL Emilio Olivares, Edmond, OK Kairat Otorov, Trumbull, CT Dev Rai, Herndon, VA Shaurya Saxena, Irving, TX Saanvi Shah, Bothell, WA Niyant Sithamraju, San Ramon, CA Anna Swenson, Henderson, NV Alejandro Valdez, Orlando, FL About the Challenge
      The Power to Explore Student Challenge is funded by the NASA Science Mission Directorate’s Radioisotope Power Systems Program Office and managed and administered by Future Engineers under the direction of the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
      Kristin Jansen
      NASA’s Glenn Research Center
      View the full article
    • By USH
      Researchers utilizing publicly available Synthetic Aperture Radar (SAR) data from Capella Space and Umbra have uncovered significant hidden structures within and beneath the CFR Pyramid on the Giza Plateau. The study reveals five distinct "Zed" structures located above what was previously believed to be the pharaoh’s burial chamber, resembling similar formations found in the Khufu Pyramid. These structures are connected by geometric pathways, with additional secondary formations identified through satellite imaging. 
      Source and credit images: The Reese report / The Kafre Research Project.
      Most notably, eight vertically aligned cylindrical structures, arranged in two parallel rows from north to south, extend 648 meters underground. These formations merge into two massive cubic structures, each approximately 80 meters per side. Tomographical analysis indicates that the cylindrical structures function as hollow wells surrounded by descending spiral pathways. 
      Further research suggests that these subterranean formations are not limited to the CFR Pyramid but extend beneath the Khufu and Menkaure pyramids as well, reaching depths of approximately two kilometers. The study marks a groundbreaking advancement in the understanding of the Giza Plateau’s underground complexity, 
      The discoveries surrounding the CFR Pyramid represent just the tip of a vast and complex structure beneath the Giza Plateau.If confirmed, this discovery could challenge mainstream Egyptology’s belief that the pyramids were simply royal tombs. 
        View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Exposes Complex Atmosphere of Starless Super-Jupiter
      This artist’s concept shows what the isolated planetary-mass object SIMP 0136 could look like based on recent observations from NASA’s James Webb Space Telescope and previous observations from Hubble, Spitzer, and numerous ground-based telescopes. Credits:
      NASA, ESA, CSA, and Joseph Olmsted (STScI) An international team of researchers has discovered that previously observed variations in brightness of a free-floating planetary-mass object known as SIMP 0136 must be the result of a complex combination of atmospheric factors, and cannot be explained by clouds alone.
      Using NASA’s James Webb Space Telescope to monitor a broad spectrum of infrared light emitted over two full rotation periods by SIMP 0136, the team was able to detect variations in cloud layers, temperature, and carbon chemistry that were previously hidden from view.
      The results provide crucial insight into the three-dimensional complexity of gas giant atmospheres within and beyond our solar system. Detailed characterization of objects like these is essential preparation for direct imaging of exoplanets, planets outside our solar system, with NASA’s Nancy Grace Roman Space Telescope, which is scheduled to begin operations in 2027.
      Rapidly Rotating, Free-Floating
      SIMP 0136 is a rapidly rotating, free-floating object roughly 13 times the mass of Jupiter, located in the Milky Way just 20 light-years from Earth. Although it is not classified as a gas giant exoplanet — it doesn’t orbit a star and may instead be a brown dwarf — SIMP 0136 is an ideal target for exo-meteorology: It is the brightest object of its kind in the northern sky. Because it is isolated, it can be observed with no fear of light contamination or variability caused by a host star. And its short rotation period of just 2.4 hours makes it possible to survey very efficiently.
      Prior to the Webb observations, SIMP 0136 had been studied extensively using ground-based observatories and NASA’s Hubble and Spitzer space telescopes.
      “We already knew that it varies in brightness, and we were confident that there are patchy cloud layers that rotate in and out of view and evolve over time,” explained Allison McCarthy, doctoral student at Boston University and lead author on a study published today in The Astrophysical Journal Letters. “We also thought there could be temperature variations, chemical reactions, and possibly some effects of auroral activity affecting the brightness, but we weren’t sure.”
      To figure it out, the team needed Webb’s ability to measure very precise changes in brightness over a broad range of wavelengths.
      Graphic A: Isolated Planetary-Mass Object SIMP 0136 (Artist’s Concept)
      This artist’s concept shows what the isolated planetary-mass object SIMP 0136 could look like based on recent observations from NASA’s James Webb Space Telescope and previous observations from Hubble, Spitzer, and numerous ground-based telescopes. Researchers used Webb’s NIRSpec (Near-Infrared Spectrograph) and MIRI (Mid-Infrared Instrument) to measure subtle changes in the brightness of infrared light as the object completed two 2.4-hour rotations. By analyzing the change in brightness of different wavelengths over time, they were able to detect variability in cloud cover at different depths, temperature variations in the upper atmosphere, and changes in carbon chemistry as different sides of the object rotated in and out of view. This illustration is based on Webb’s spectroscopic observations. Webb has not captured a direct image of the object. NASA, ESA, CSA, and Joseph Olmsted (STScI) Charting Thousands of Infrared Rainbows
      Using NIRSpec (Near-Infrared Spectrograph), Webb captured thousands of individual 0.6- to 5.3-micron spectra — one every 1.8 seconds over more than three hours as the object completed one full rotation. This was immediately followed by an observation with MIRI (Mid-Infrared Instrument), which collected hundreds of spectroscopic measurements of 5- to 14-micron light — one every 19.2 seconds, over another rotation.
      The result was hundreds of detailed light curves, each showing the change in brightness of a very precise wavelength (color) as different sides of the object rotated into view.
      “To see the full spectrum of this object change over the course of minutes was incredible,” said principal investigator Johanna Vos, from Trinity College Dublin. “Until now, we only had a little slice of the near-infrared spectrum from Hubble, and a few brightness measurements from Spitzer.”
      The team noticed almost immediately that there were several distinct light-curve shapes. At any given time, some wavelengths were growing brighter, while others were becoming dimmer or not changing much at all. A number of different factors must be affecting the brightness variations.
      “Imagine watching Earth from far away. If you were to look at each color separately, you would see different patterns that tell you something about its surface and atmosphere, even if you couldn’t make out the individual features,” explained co-author Philip Muirhead, also from Boston University. “Blue would increase as oceans rotate into view. Changes in brown and green would tell you something about soil and vegetation.”
      Graphic B: Isolated Planetary-Mass Object SIMP 0136 (NIRSpec Light Curves)
      These light curves show the change in brightness of three different sets of wavelengths (colors) of near-infrared light coming from the isolated planetary-mass object SIMP 0136 as it rotated. The light was captured by Webb’s NIRSpec (Near-Infrared Spectrograph), which collected a total of 5,726 spectra — one every 1.8 seconds — over the course of about 3 hours on July 23, 2023. The variations in brightness are thought to be related to different atmospheric features — deep clouds composed of iron particles, higher clouds made of tiny grains of silicate minerals, and high-altitude hot and cold spots — rotating in and out of view. The diagram at the right illustrates the possible structure of SIMP 0136’s atmosphere, with the colored arrows representing the same wavelengths of light shown in the light curves. Thick arrows represent more (brighter) light; thin arrows represent less (dimmer) light. NASA, ESA, CSA, and Joseph Olmsted (STScI) Patchy Clouds, Hot Spots, and Carbon Chemistry
      To figure out what could be causing the variability on SIMP 0136, the team used atmospheric models to show where in the atmosphere each wavelength of light was originating.
      “Different wavelengths provide information about different depths in the atmosphere,” explained McCarthy. “We started to realize that the wavelengths that had the most similar light-curve shapes also probed the same depths, which reinforced this idea that they must be caused by the same mechanism.”
      One group of wavelengths, for example, originates deep in the atmosphere where there could be patchy clouds made of iron particles. A second group comes from higher clouds thought to be made of tiny grains of silicate minerals. The variations in both of these light curves are related to patchiness of the cloud layers.
      A third group of wavelengths originates at very high altitude, far above the clouds, and seems to track temperature. Bright “hot spots” could be related to auroras that were previously detected at radio wavelengths, or to upwelling of hot gas from deeper in the atmosphere.
      Some of the light curves cannot be explained by either clouds or temperature, but instead show variations related to atmospheric carbon chemistry. There could be pockets of carbon monoxide and carbon dioxide rotating in and out of view, or chemical reactions causing the atmosphere to change over time.
      “We haven’t really figured out the chemistry part of the puzzle yet,” said Vos. “But these results are really exciting because they are showing us that the abundances of molecules like methane and carbon dioxide could change from place to place and over time. If we are looking at an exoplanet and can get only one measurement, we need to consider that it might not be representative of the entire planet.”
      This research was conducted as part of Webb’s General Observer Program 3548.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from The Astrophysical Journal Letters.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Margaret W. Carruthers – mcarruthers@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Learn more about brown dwarf discoveries
      Article: Spectroscopy 101
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Universe



      Universe Stories



      Exoplanets


      View the full article
  • Check out these Videos

×
×
  • Create New...