Members Can Post Anonymously On This Site
NASA’s DART Mission Hits Asteroid in First-Ever Planetary Defense Test
-
Similar Topics
-
By NASA
On Jan. 19, 1965, Gemini 2 successfully completed the second of two uncrewed test flights of the spacecraft and its Titan II booster, clearing the way for the first crewed mission. The 18-minute suborbital mission achieved the primary goals of flight qualifying the Gemini spacecraft, especially its heat shield during a stressful reentry. Recovery forces retrieved the capsule following its splashdown, allowing engineers to evaluate how its systems fared during the flight. The success of Gemini 2 enabled the first crewed mission to fly two months later, beginning a series of 10 flights over the following 20 months. The astronauts who flew these missions demonstrated the rendezvous and docking techniques necessary to implement the Lunar Orbit Rendezvous method NASA chose for the Moon landing mission. They also proved that astronauts could work outside their spacecraft during spacewalks and that spacecraft and astronauts could function for at least eight days, the minimum time for a roundtrip lunar mission. The Gemini program proved critical to fulfill President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to Earth before the end of the 1960s.
Cutaway diagram of the Gemini spacecraft. Workers at Launch Pad 19 lift Gemini 2 to mate it with its Titan II rocket. At Pad 19, engineers verify the flight simulators inside Gemini 2. Following the success of Gemini 1 in April 1964, NASA had hoped to fly the second mission before the end of the year and the first crewed mission by January 1965. The two stages of the Titan II rocket arrived at Cape Kennedy from the Martin Marietta factory in Baltimore on July 11, and workers erected it on Launch Pad 19 five days later. A lightning strike at the pad on Aug. 17 invalidated all previous testing and required replacement of some pad equipment. A series of three hurricanes in August and September forced workers to partially or totally unstack the vehicle before stacking it for the final time on Sept. 14. The Gemini 2 spacecraft arrived at Cape Kennedy from its builder, the McDonnell Company in St. Louis, on Sept. 21, and workers hoisted it to the top of the Titan II on Oct. 18. Technical issues delayed the spacecraft’s physical mating to the rocket until Nov. 5. These accumulated delays pushed the launch date back to Dec. 9.
The launch abort on Dec. 9, 1964. Liftoff of Gemini 2 from Launch Pad 19 on Jan. 19, 1965. Engineers in the blockhouse monitor the progress of the Titan II during the ascent. Fueling of the rocket began late on Dec. 8, and following three brief holds in the countdown, the Titan’s two first stage engines ignited at 11:41 a.m. EST on Dec. 9. and promptly shut down one second later. Engineers later determined that a cracked valve resulted in loss of hydraulic pressure, causing the malfunction detection system to switch to its backup mode, forcing a shutdown of the engines. Repairs meant a delay into the new year. On Jan. 19, 1965, following a mostly smooth countdown, Gemini 2 lifted off from Pad 19 at 9:04 a.m. EST.
The Mission Control Center (MCC) at NASA’s Kennedy Space Center in Florida. In the MCC, astronauts Eugene Cernan, left, Walter Schirra, Gordon Cooper, Donald “Deke” Slayton, and Virgil “Gus” Grissom monitor the Gemini 2 flight. In the Gemini Mission Control Center at NASA’s Kennedy Space Center in Florida, Flight Director Christopher C. Kraft led a team of flight controllers that monitored all aspects of the flight. At the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, a team of controllers led by Flight Director John Hodge passively monitored the flight from the newly built Mission Control Center. They would act as observers for this flight and Gemini 3, the first crewed mission, before taking over full control with Gemini IV, and control all subsequent American human spaceflights. The Titan rocket’s two stages placed Gemini 2 into a suborbital trajectory, reaching a maximum altitude of 98.9 miles, with the vehicle attaining a maximum velocity of 16,709 miles per hour. Within a minute after separating from the Titan’s second stage, Gemini 2 executed a maneuver to orient its heat shield in the direction of flight to prepare for reentry. Flight simulators installed where the astronauts normally would sit controlled the maneuvers. About seven minutes after liftoff, Gemini 2 jettisoned its equipment section, followed by firing of the retrorockets, and then separation of the retrorocket section, exposing the spacecraft’s heat shield.
View from a camera mounted on a cockpit window during Gemini 2’s reentry. View from the cockpit window during Gemini 2’s descent on its parachute. Gemini 2 then began its reentry, the heat shield protecting the spacecraft from the 2,000-degree heat generated by friction with the Earth’s upper atmosphere. A pilot parachute pulled away the rendezvous and recovery section. At 10,000 feet, the main parachute deployed, and Gemini 2 descended to a splashdown 2,127 miles from its launch pad, after a flight of 18 minutes 16 seconds. The splashdown took place in the Atlantic Ocean about 800 miles east of San Juan, Puerto Rico, and 25 miles from the prime recovery ship, the U.S.S. Lake Champlain (CVS-39).
A U.S. Navy helicopter hovers over the Gemini 2 capsule following its splashdown as a diver jumps into the water. Sailors hoist Gemini 2 aboard the U.S.S. Lake Champlain. U.S. Navy helicopters delivered divers to the splashdown area, who installed a flotation collar around the spacecraft. The Lake Champlain pulled alongside, and sailors hoisted the capsule onto the carrier, securing it on deck one hour forty minutes after liftoff. The spacecraft appeared to be in good condition and arrived back at Cape Kennedy on Jan. 22 for a thorough inspection. As an added bonus, sailors recovered the rendezvous and recovery section. Astronaut Virgil “Gus” Grissom, whom along with John Young NASA had selected to fly the first crewed Gemini mission, said after the splashdown, “We now see the road clear to our flight, and we’re looking forward to it.” Flight Director Kraft called it “very successful.” Gemini Program Manager Charles Matthews predicted the first crewed mission could occur within three months. Gemini 3 actually launched on March 23.
Enjoy this NASA video of the Gemini 2 mission.
Postscript
The Gemini-B capsule and a Manned Orbiting Laboratory (MOL) mockup atop a Titan-IIIC rocket in 1966. The flown Gemini-B capsule on display at the Cape Canaveral Space Force Museum in Florida. Former MOL and NASA astronaut Robert Crippen stands beside the only flown Gemini-B capsule – note the hatch in the heat shield at top. Gemini 2 not only cleared the way for the first crewed Gemini mission and the rest of the program, it also took on a second life as a test vehicle for the U.S. Air Force’s Manned Orbiting Laboratory (MOL). The Air Force modified the spacecraft, including cutting a hatch through its heat shield, renamed it Gemini-B, and launched it on Nov. 3, 1966, atop a Titan IIIC rocket. The test flight successfully demonstrated the hatch in the heat shield design during the capsule’s reentry after a 33-minute suborbital flight. Recovery forces retrieved the Gemini-B capsule in the South Atlantic Ocean and returned it to the Air Force for postflight inspection. This marked the only repeat flight of an American spacecraft intended for human spaceflight until the advent of the space shuttle. Visitors can view Gemini 2/Gemini-B on display at the Cape Canaveral Space Force Museum.
View the full article
-
By NASA
Trailer for NASA’s upcoming documentary, “Planetary Defenders,” which will take audiences inside the high-stakes world of asteroid hunting and planetary defense. NASA is bringing the high-stakes world of planetary defense to the Sundance Film Festival, highlighting its upcoming documentary, “Planetary Defenders,” during a panel ahead of its spring 2025 premiere on the agency’s streaming service.
“We’re thrilled that NASA is attending Sundance Film Festival for the first time – a festival renowned for its innovative spirit,” said Brittany Brown, director, NASA Office of Communications Digital and Technology Division, at the agency’s Headquarters in Washington. “Our participation represents a groundbreaking opportunity for NASA to engage with the film industry and share new avenues for collaborative storytelling. By connecting with the creative minds at the festival, we aim to inspire new narratives, explore new avenues for collaborative storytelling, and ignite a renewed sense of wonder in space exploration.”
The NASA+ film explores a compelling question: How would humanity respond if we discovered an asteroid headed for Earth? Far from science fiction, “Planetary Defenders” follows real-life astronomers and other experts as they navigate the challenges of asteroid detection and safeguarding our planet from potential hazards.
“NASA is home to some of the greatest stories ever told, and NASA’s new streaming platform NASA+ is dedicated to sharing these stories to inspire the next generation,” said Rebecca Sirmons, general manager and head of NASA+. “We are honored to host a panel at this year’s Sundance Film Festival discussing our upcoming NASA+ documentary “Planetary Defenders.”
The panel, entitled “You Bet Your Asteroid: NASA Has a Story to Tell,” will start at 1:30 p.m. MST on Sunday, Jan. 26, at the Filmmaker Lodge in the Elks Building, 550 Main St., 2nd Floor, Park City, Utah. The event will include a discussion about the film followed by a Q&A session. Attendees also will have the opportunity to meet NASA experts and some of the planetary defenders themselves.
Panelists include:
Rebecca Sirmons, head of NASA+, NASA Scott Bednar, filmmaker and director, NASA 360/National Institute of Aerospace Jessie Wilde, filmmaker and director, NASA 360/National Institute of Aerospace Dr. Kelly Fast, acting planetary defense officer, NASA’s Planetary Defense Coordination Office David Rankin, senior survey operations specialist, Catalina Sky Survey Dr. Vishnu Reddy, professor of planetary sciences and director of the Space4 Center, University of Arizona Media are encouraged to RSVP in advance and may request one-on-one interviews with NASA experts following the panel by contacting Karen Fox at karen.c.fox@nasa.gov.
Through NASA+, the agency is continuing its decades long tradition of sharing live events, original content, and the latest news while NASA works to improve life on Earth through innovation, exploration, and discovery for the benefit of all. The free, on-demand streaming service is available to download without a subscription on most major platforms via the NASA App on iOS and Android mobile and tablet devices, as well as streaming media players like Roku, Apple TV, and Fire TV.
To keep up with the latest news from NASA’s planetary defense program, visit:
https://www.nasa.gov/planetarydefense
-end-
Abbey Donaldson
Headquarters, Washington
202-358-1600
abbey.a.donaldson@nasa.gov
Share
Details
Last Updated Jan 17, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
NASA+ Asteroids Planetary Defense Planetary Defense Coordination Office Planetary Science Planetary Science Division Science Mission Directorate Social Media View the full article
-
By NASA
Pandora, NASA’s newest exoplanet mission, is one step closer to launch with the completion of the spacecraft bus, which provides the structure, power, and other systems that will enable the mission to carry out its work.
Watch to learn more about NASA’s Pandora mission, which will revolutionize the study of exoplanet atmospheres.
NASA’s Goddard Space Flight Center “This is a huge milestone for us and keeps us on track for a launch in the fall,” said Elisa Quintana, Pandora’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The bus holds our instruments and handles navigation, data acquisition, and communication with Earth — it’s the brains of the spacecraft.”
Pandora, a small satellite, will provide in-depth study of at least 20 known planets orbiting distant stars in order to determine the composition of their atmospheres — especially the presence of hazes, clouds, and water. This data will establish a firm foundation for interpreting measurements by NASA’s James Webb Space Telescope and future missions that will search for habitable worlds.
Pandora’s spacecraft bus was photographed Jan. 10 within a thermal-vacuum testing chamber at Blue Canyon Technologies in Lafayette, Colorado. The bus provides the structure, power, and other systems that will enable the mission to help astronomers better separate stellar features from the spectra of transiting planets. NASA/Weston Maughan, BCT “We see the presence of water as a critical aspect of habitability because water is essential to life as we know it,” said Goddard’s Ben Hord, a NASA Postdoctoral Program Fellow who discussed the mission at the 245th meeting of the American Astronomical Society in National Harbor, Maryland. “The problem with confirming its presence in exoplanet atmospheres is that variations in light from the host star can mask or mimic the signal of water. Separating these sources is where Pandora will shine.”
Funded by NASA’s Astrophysics Pioneers program for small, ambitious missions, Pandora is a joint effort between Lawrence Livermore National Laboratory in California and NASA Goddard.
“Pandora’s near-infrared detector is actually a spare developed for the Webb telescope, which right now is the observatory most sensitive to exoplanet atmospheres,” Hord added. “In turn, our observations will improve Webb’s ability to separate the star’s signals from those of the planet’s atmosphere, enabling Webb to make more precise atmospheric measurements.”
Astronomers can sample an exoplanet’s atmosphere when it passes in front of its star as seen from our perspective, an event called a transit. Part of the star’s light skims the atmosphere before making its way to us. This interaction allows the light to interact with atmospheric substances, and their chemical fingerprints — dips in brightness at characteristic wavelengths — become imprinted in the light.
But our telescopes see light from the entire star as well, not just what’s grazing the planet. Stellar surfaces aren’t uniform. They sport hotter, unusually bright regions called faculae and cooler, darker regions similar to sunspots, both of which grow, shrink, and change position as the star rotates.
An artist’s concept of the Pandora mission, seen here without the thermal blanketing that will protect the spacecraft, observing a star and its transiting exoplanet. NASA’s Goddard Space Flight Center/Conceptual Image Lab Using a novel all-aluminum, 45-centimeter-wide (17 inches) telescope, jointly developed by Livermore and Corning Specialty Materials in Keene, New Hampshire, Pandora’s detectors will capture each star’s visible brightness and near-infrared spectrum at the same time, while also obtaining the transiting planet’s near-infrared spectrum. This combined data will enable the science team to determine the properties of stellar surfaces and cleanly separate star and planetary signals.
The observing strategy takes advantage of the mission’s ability to continuously observe its targets for extended periods, something flagship missions like Webb, which are in high demand, cannot regularly do.
Over the course of its year-long prime mission, Pandora will observe at least 20 exoplanets 10 times, with each stare lasting a total of 24 hours. Each observation will include a transit, which is when the mission will capture the planet’s spectrum.
Pandora is led by NASA’s Goddard Space Flight Center. Lawrence Livermore National Laboratory provides the mission’s project management and engineering. Pandora’s telescope was manufactured by Corning and developed collaboratively with Livermore, which also developed the imaging detector assemblies, the mission’s control electronics, and all supporting thermal and mechanical subsystems. The infrared sensor was provided by NASA Goddard. Blue Canyon Technologies provided the bus and is performing spacecraft assembly, integration, and environmental testing. NASA’s Ames Research Center in California’s Silicon Valley will perform the mission’s data processing. Pandora’s mission operations center is located at the University of Arizona, and a host of additional universities support the science team.
Download high-resolution video and images from NASA’s Scientific Visualization Studio
By Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
Details
Last Updated Jan 16, 2025 Related Terms
Astrophysics Astrophysics Division Exoplanet Atmosphere Exoplanet Exploration Program Exoplanet Science Exoplanet Transits Exoplanets Goddard Space Flight Center Studying Exoplanets The Universe View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.