Members Can Post Anonymously On This Site
Kendall draws direct connection to mission success, diverse, fulfilled, accomplished Total Force
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s EMIT collected this hyperspectral image of the Amazon River in northern Brazil on June 30 as part of an effort to map global ecosystem biodiversity. The instrument was originally tasked with mapping minerals over deserts; its data is now being used in research on a diverse range of topics. NASA/JPL-Caltech The imaging spectrometer measures the colors of light reflected from Earth’s surface to study fields such as agriculture, hydrology, and climate science.
Observing our planet from the International Space Station since July 2022, NASA’s EMIT (Earth Surface Mineral Dust Source Investigation) mission is beginning its next act.
At first the imaging spectrometer was solely aimed at mapping minerals over Earth’s desert regions to help determine the cooling and heating effects that dust can have on regional and global climate. The instrument soon added another skill: pinpointing greenhouse gas emission sources, including landfills and fossil fuel infrastructure.
Following a mission extension this year, EMIT is now collecting data from regions beyond deserts, addressing topics as varied as agriculture, hydrology, and climate science.
Imaging spectrometers like EMIT detect the light reflected from Earth, and they separate visible and infrared light into hundreds of wavelength bands — colors, essentially. Scientists use patterns of reflection and absorption at different wavelengths to determine the composition of what the instrument is observing. The approach echoes Isaac Newton’s prism experiments in 1672, in which the physicist discovered that visible light is composed of a rainbow of colors.
Perched on the International Space Station, NASA’s EMIT can differentiate between types of vegetation to help researchers understand the distribution and traits of plant communities. The instrument collected this data over the mid-Atlantic U.S. on April 23.NASA/JPL-Caltech “Breakthroughs in optics, physics, and chemistry led to where we are today with this incredible instrument, providing data to help address pressing questions on our planet,” said Dana Chadwick, EMIT’s applications lead at NASA’s Jet Propulsion Laboratory in Southern California.
New Science Projects
In its extended mission, EMIT’s data will be the focus of 16 new projects under NASA’s Research Opportunities in Space and Earth Science (ROSES) program, which funds science investigations at universities, research institutions, and NASA.
For example, the U.S. Geological Survey (USGS) and the U.S. Department of Agriculture’s (USDA) Agricultural Research Service are exploring how EMIT can assess climate-smart agricultural practices. Those practices — winter cover crops and conservation tillage — involve protecting cropland during non-growing seasons with either living plants or dead plant matter to prevent erosion and manage nitrogen.
Imaging spectrometers are capable of gathering data on the distribution and characteristics of plants and plant matter, based on the patterns of light they reflect. The information can help agricultural agencies incentivize farmers to use sustainable practices and potentially help farmers manage their fields.
“We’re adding more accuracy and reducing error on the measurements we are supplying to end users,” said Jyoti Jennewein, an Agricultural Research Service research physical scientist based in Fort Collins, Colorado, and a project co-lead.
The USGS-USDA project is also informing analytical approaches for NASA’s future Surface Biology and Geology-Visible Shortwave Infrared mission. The satellite will cover Earth’s land and coasts more frequently than EMIT, with finer spatial resolution.
Looking at Snowmelt
Another new project will test whether EMIT data can help refine estimates of snowpack melting rates. Such an improvement could inform water management in states like California, where meltwater makes up the majority of the agricultural water supply.
Imaging spectrometers like EMIT measure the albedo of snow — the percentage of solar radiation it’s reflecting. What isn’t reflected is absorbed, so the observations indicate how much energy snow is taking in, which in turn helps with estimates of snow melt rates. The instruments also discern what’s affecting albedo: snow-grain size, dust or soot contamination, or both.
For this work, EMIT’s ability to measure beyond visible light is key. Ice is “pretty absorptive at near-infrared and the shortwave infrared wavelengths,” said Jeff Dozier, a University of California, Santa Barbara professor emeritus and the project’s principal investigator.
Other ROSES-funded projects focus on wildflower blooming, phytoplankton and carbon dynamics in inland waters, ecosystem biodiversity, and functional traits of forests.
Dust Impacts
Researchers with EMIT will continue to study the climate effects of dust. When lofted into the air by windstorms, darker, iron-filled dust absorbs the Sun’s heat and warms the surrounding air, while lighter-colored, clay-rich particles do the opposite. Scientists have been uncertain whether airborne dust has overall cooling or warming effects on the planet. Before EMIT, they could only assume the color of particles in a region.
The EMIT mission is “giving us lab-quality results, everywhere we need to know,” said Natalie Mahowald, the mission’s deputy principal investigator and an Earth system scientist at Cornell University in Ithaca, New York. Feeding the data into Earth system computer models, Mahowald expects to get closer to pinpointing dust’s climate impact as Earth warms.
Greenhouse Gas Detection
The mission will continue to identify point-source emissions of methane and carbon dioxide, the greenhouse gases most responsible for climate change, and observations are available through EMIT’s data portal and the U.S. Greenhouse Gas Center.
The EMIT team is also refining the software that identifies and measures greenhouse-gas plumes in the data, and they’re working to streamline the process with machine-learning automation. Aligning with NASA’s open science initiative, they are sharing code with public, private, and nonprofit organizations doing similar work.
“Making this work publicly accessible has fundamentally pushed the science of measuring point-source emissions forward and expanded the use of EMIT data,” said Andrew Thorpe, the JPL research technologist heading the EMIT greenhouse gas effort.
More About EMIT
The EMIT instrument was developed by NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California. Launched to the International Space Station in July 2022, EMIT is on an extended three-year mission in which it’s supporting a range of research projects. EMIT’s data products are available at the NASA Land Processes Distributed Active Archive Center for use by other researchers and the public.
To learn more about the mission, visit:
https://earth.jpl.nasa.gov/emit/
How the new NISAR satellite will track Earth’s changing surface A planet-rumbling Greenland tsunami seen from above News Media Contacts
Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
2024-159
Share
Details
Last Updated Nov 14, 2024 Related Terms
EMIT (Earth Surface Mineral Dust Source Investigation) Earth Earth Science Earth Science Division Jet Propulsion Laboratory Explore More
4 min read NASA and Forest Service Use Balloon to Help Firefighters Communicate
Article 12 mins ago 9 min read The Earth Observer Editor’s Corner: Fall 2024
On September 18, 2024, the National Oceanic and Atmospheric Administration (NOAA) shared the first images…
Article 35 mins ago 3 min read Summary of Aura 20th Anniversary Event
Snippets from The Earth Observer’s Editor’s Corner The last of NASA’s three EOS Flagships –…
Article 37 mins ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
This photo shows the Optical Telescope Assembly for NASA’s Nancy Grace Roman Space Telescope, which was recently delivered to the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Md.NASA/Chris Gunn NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope Assembly, which includes a 7.9-foot (2.4-meter) primary mirror, nine additional mirrors, and supporting structures and electronics. The assembly was delivered Nov. 7. to the largest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, where the observatory is being built.
The telescope will focus cosmic light and send it to Roman’s instruments, revealing many billions of objects strewn throughout space and time. Using the mission’s Wide Field Instrument, a 300-megapixel infrared camera, astronomers will survey the cosmos all the way from the outskirts of our solar system toward the edge of the observable universe. Scientists will use Roman’s Coronagraph Instrument to test new technologies for dimming host stars to image planets and dusty disks around them in far better detail than ever before.
“We have a top-notch telescope that’s well aligned and has great optical performance at the cold temperatures it will see in space,” said Bente Eegholm, optics lead for Roman’s Optical Telescope Assembly at NASA Goddard. “I am now looking forward to the next phase where the telescope and instruments will be put together to form the Roman observatory.”
In this photo, optical engineer Bente Eegholm inspects the surface of the primary mirror for NASA’s Nancy Grace Roman Space Telescope. This 7.9-foot (2.4-meter) mirror is a major component of the Optical Telescope Assembly, which also contains nine additional mirrors and supporting structures and electronics.NASA/Chris Gunn Designed and built by L3Harris Technologies in Rochester, New York, the assembly incorporates key optics (including the primary mirror) that were made available to NASA by the National Reconnaissance Office. The team at L3Harris then reshaped the mirror and built upon the inherited hardware to ensure it would meet Roman’s specifications for expansive, sensitive infrared observations.
“The telescope will be the foundation of all of the science Roman will do, so its design and performance are among the largest factors in the mission’s survey capability,” said Josh Abel, lead Optical Telescope Assembly systems engineer at NASA Goddard.
The team at Goddard worked closely with L3Harris to ensure these stringent requirements were met and that the telescope assembly will integrate smoothly into the rest of the Roman observatory.
The assembly’s design and performance will largely determine the quality of the mission’s results, so the manufacturing and testing processes were extremely rigorous. Each optical component was tested individually prior to being assembled and assessed together earlier this year. The tests helped ensure that the alignment of the telescope’s mirrors will change as expected when the telescope reaches its operating temperature in space.
Then, the telescope was put through tests simulating the extreme shaking and intense sound waves associated with launch. Engineers also made sure that tiny components called actuators, which will adjust some of the mirrors in space, move as predicted. And the team measured gases released from the assembly as it transitioned from normal air pressure to a vacuum –– the same phenomenon that has led astronauts to report that space smells gunpowdery or metallic. If not carefully controlled, these gases could contaminate the telescope or instruments.
Upon arrival at NASA’s Goddard Space Flight Center, the Optical Telescope Assembly for the agency’s Nancy Grace Roman Space Telescope was lifted out of the shipping fixture and placed with other mission hardware in Goddard’s largest clean room. Now, it will be installed onto Roman’s Instrument Carrier, a structure that will keep the telescope and Roman’s two instruments optically aligned. The assembly’s electronics box –– essentially the telescope’s brain –– will be mounted within the spacecraft along with Roman’s other electronics.NASA/Chris Gunn Finally, the telescope underwent a month-long thermal vacuum test to ensure it will withstand the temperature and pressure environment of space. The team closely monitored it during cold operating conditions to ensure the telescope’s temperature will remain constant to within a fraction of a degree. Holding the temperature constant allows the telescope to remain in stable focus, making Roman’s high-resolution images consistently sharp. Nearly 100 heaters on the telescope will help keep all parts of it at a very stable temperature.
“It is very difficult to design and build a system to hold temperatures to such a tight stability, and the telescope performed exceptionally,” said Christine Cottingham, thermal lead for Roman’s Optical Telescope Assembly at NASA Goddard.
Now that the assembly has arrived at Goddard, it will be installed onto Roman’s Instrument Carrier, a structure that will keep the telescope and Roman’s two instruments optically aligned. The assembly’s electronics box –– essentially the telescope’s brain –– will be mounted within the spacecraft along with Roman’s other electronics.
With this milestone, Roman remains on track for launch by May 2027.
“Congratulations to the team on this stellar accomplishment!” said J. Scott Smith, the assembly’s telescope manager at NASA Goddard. “The completion of the telescope marks the end of an epoch and incredible journey for this team, and yet only a chapter in building Roman. The team’s efforts have advanced technology and ignited the imaginations of those who dream of exploring the stars.”
Virtually tour an interactive version of the telescope The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
claire.andreoli@nasa.gov
301-286-1940
Explore More
3 min read NASA’s Roman Space Telescope’s ‘Eyes’ Pass First Vision Test
Article 7 months ago 6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
Article 2 weeks ago 6 min read Primary Instrument for Roman Space Telescope Arrives at NASA Goddard
Article 3 months ago Share
Details
Last Updated Nov 14, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Exoplanets Goddard Space Flight Center The Universe View the full article
-
By European Space Agency
Video: 00:06:45 Smile is the Solar wind Magnetosphere Ionosphere Link Explorer, a brand-new space mission currently in the making. It will study space weather and the interaction between the solar wind and Earth’s environment.
Unique about Smile is that it will take the first X-ray images and videos of the solar wind slamming into Earth’s protective magnetic bubble, and its complementary ultraviolet images will provide the longest-ever continuous look at the northern lights.
In this first of several short videos, David Agnolon (Smile Project Manager) and Philippe Escoubet (Smile Project Scientist) talk about the why and the how of Smile. You’ll see scenes of the building and testing of the spacecraft’s payload module by Airbus in Madrid, including the installation of one of the European instruments, the Soft X-ray Imager from the University of Leicester.
Smile is a 50–50 collaboration between the European Space Agency (ESA) and the Chinese Academy of Sciences (CAS). ESA provides the payload module of the spacecraft, which carries three of the four science instruments, and the Vega-C rocket which will launch Smile to space. CAS provides the platform module hosting the fourth science instrument, as well as the service and propulsion modules.
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
Sols 4355-4356: Weekend Success Brings Monday Best
NASA’s Mars rover Curiosity acquired this image of the contact science target “Black Bear Lake” from about 7 centimeters away (about 3 inches), using its Mars Hand Lens Imager (MAHLI). The MAHLI, located on the turret at the end of the rover’s robotic arm, used an onboard focusing process to merge multiple images of the same target into a composite image, on Nov. 3, 2024 – sol 4353, or Martian day 4,353 of the Mars Science Laboratory Mission – at 21:36:01 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Nov. 4, 2024
After a spooky week last week, it’s great to see all our weekend plans succeed as planned! We don’t take success for granted as a rover going on 13 years. With all of the science at our fingertips and all the battery power we could need, the team took right advantage of this two-sol touch-and-go Monday plan. We have a bedrock DRT target for APXS and MAHLI named “Epidote Peak” and a MAHLI-only target of a crushed rock we drove over named “Milly’s Foot Path.”
APXS data is better when it’s cold, so we’ve planned the DRT brushing and APXS to start our first sol about 11:14 local Gale time. MAHLI images are usually better in the afternoon lighting, so we’ll leave the arm unstowed and spend some remote science time beforehand, about 12:15 local time. ChemCam starts that off with a LIBS raster over a bedrock block with some interesting light and dark layering, named “Albanita Meadows” and seen here in the the upper-right-ish of this Navcam workspace frame. ChemCam will then take a long-distance RMI mosaic of a portion of the upper Gediz Vallis ridge to the north. Mastcam continues the remote science with an Albanita Meadows documentation image, a 21-frame stereo mosaic of some dark-toned upturned blocks about 5 meters away (about 16 feet), a four-frame stereo mosaic of some polygonal fracture patterns about 20 meters away (about 66 feet), and a mega 44-frame stereo mosaic of Wilkerson butte, upper Gediz Vallis ridge, “Fascination Turret,” and “Pinnacle Ridge” in the distance. That’s a total of 138 Mastcam images! With remote sensing complete, the RSM will stow itself about 14:00 local time to make time for MAHLI imaging.
Between about 14:15 and 14:30 local time, MAHLI will take approximately 64 images of Epidote Peak and Milly’s Foot Path. Most of the images are being acquired in full shadow, so there is uniform lighting and saturation in the images. We’ll stow the arm at about 14:50 and begin our drive! This time we have an approximately 34-meter drive to the northwest (about 112 feet), bringing us almost all the way to the next dark-toned band in the sulfate unit. But no matter what happens with the drive, we’ll still do some remote science on the second sol including a Mastcam tau observation, a ChemCam LIBS in-the-blind (a.k.a AEGIS: Autonomous Exploration for Gathering Increased Science), and some Navcam movies of the sky and terrain.
Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
Share
Details
Last Updated Nov 06, 2024 Related Terms
Blogs Explore More
3 min read Sols 4352-4354: Halloween Fright Night on Mars
Article
1 day ago
2 min read Sols 4350-4351: A Whole Team Effort
Article
5 days ago
2 min read Sols 4348-4349: Smoke on the Water
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
From the Mission Control Center to community celebrations, Kenneth Attocknie blends safety expertise with a commitment to cultural connection.
For the past 25 years at NASA, Attocknie has dedicated his career to safeguarding the International Space Station and supporting real-time mission operations at Johnson Space Center in Houston.
As a principal safety engineer in the Safety and Mission Assurance Directorate, Attocknie ensures the safe operation of the space station’s environmental control and life support system. This system is vital for maintaining the life-sustaining environment aboard the orbiting laboratory— a critical foundation for similar systems planned for future Artemis missions.
Official portrait of Kenneth Attocknie.NASA/Bill Stafford As a contractor with SAIC, Attocknie has served as a flight controller, astronaut crew office engineer, and astronaut crew instructor. He joined NASA just as the first two modules of the space station, Zarya and Unity, connected in space on Dec. 6, 1998.
“I’ve supported the space station ever since and have been blessed to witness the remarkable progression of this amazing orbiting experiment,” he said. “I feel I have found a way to contribute positively to NASA’s mission: to improve life for all people on our planet.”
He also contributed to closing out the Space Shuttle Program and worked in system safety for the Constellation program.
As part of SAIC’s Employee Resource Group, Attocknie supports the Mathematics, Engineering, Science Achievement project, which uses project-based learning to inspire high school students from underrepresented communities to pursue careers in science, technology, engineering, and mathematics. He continues to advocate for Native Americans as a member of the American Indian Science and Engineering Society, helping NASA engage with college students across Indian Country.
Flight controller Kenneth Attocknie on console in the Blue Flight Control Room during Expedition 11. NASA/Mark Sowa Attocknie strives to contribute to a space exploration legacy that uplifts and unites cultures, paving the way for a future in human spaceflight that honors and empowers all.
A member of the Comanche and Caddo tribes of Oklahoma, he has made it his mission to create a cross-cultural exchange between NASA and Native communities to provide opportunities for Natives to visit Johnson.
One of his proudest moments was organizing a Native American Heritage Month event with NASA’s Equal Opportunity and Diversity Office. The celebration brought together Native dancers and singers from Oklahoma and Texas to honor their heritage at Johnson.
“Seeing the Johnson community rally around this event was amazing,” said Attocknie. “It was a profound experience to share and celebrate my culture here.”
A traditional dance exhibition during a Native American cultural celebration at NASA’s Johnson Space Center in Houston. NASA/Allison Bills Overcoming challenges and setbacks has been part of his NASA experience as well. “Finding and achieving my purpose is always an ongoing journey,” he said. “Accepting what might seem like a regression is the first step of growth. There’s always a lesson to be found, and every disappointment can fuel a new ambition and direction. Ride the waves, be humble, learn lessons, and above all, always keep going.”
He believes that NASA’s mission is deeply connected to diversity and inclusion. “You can’t truly benefit humankind if you don’t represent humankind,” said Attocknie. “The status quo may feel comfortable, but it leads to stagnation and is the antithesis of innovation.”
Kenneth Attocknie (middle) celebrates his Native American culture with the Caddo tribe of Oklahoma.NASA/Allison Bills Attocknie’s hope for the Artemis Generation? “A healthier planet, society, and the desire to pass on lessons of stewardship for our environment. All life is precious.”
He sees NASA as a gateway to a brighter future: “NASA can truly harness its influence to be an example for our planet, not only in the new heavenly bodies we journey to but also in the new human spirits we touch.”
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.