Jump to content

Recommended Posts

Posted
In recent weeks, many strange UFO-like objects have been observed by the various solar satellites. 

sun%20ufo%20docking%20station.jpg

Besides hexagon and circular objects, a huge rectangular craft with possible docking station for incoming and outgoing smaller UFOs at the rear of the mothership has been caught at the moment it passing the sun. 

The video show some of these possible alien craft.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut Victor Glover tests collection methods for ISS External Microorganisms in the Neutral Buoyancy Lab at Johnson Space Center.NASA Astronauts are scheduled to venture outside the International Space Station to collect microbiological samples during crew spacewalks for the ISS External Microorganisms experiment. This investigation focuses on sampling at sites near life support system vents to examine whether the spacecraft releases microorganisms, how many, and how far they may travel.
      This experiment could help researchers understand whether and how these microorganisms survive and reproduce in the harsh space environment and how they may perform at planetary destinations such as the Moon and Mars. Extremophiles, or microorganisms that can survive harsh environments, are also of interest to industries on Earth such as pharmaceuticals and agriculture.
      Spacecrafts and spacesuits are thoroughly sterilized before missions; however, humans carry their own microbiomes and continuously regenerate microbial communities. It’s important to understand and address how well current designs and processes prevent or limit the spread of human contamination.  The data could help determine whether changes are needed to crewed spacecraft, including spacesuits, that are used to explore destinations where life may exist now or in the past.
      Learn more about how researchers monitor microbes on the space station.
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      International Space Station News
      Space Station Research Reference Materials
      Station Benefits for Humanity
      View the full article
    • By NASA
      Insights into metal alloy solidification

      Researchers report details of phase and structure in the solidification of metal alloys on the International Space Station, including formation of microstructures. Because these microstructures determine a material’s mechanical properties, this work could support improvements in techniques for producing coatings and additive manufacturing or 3D printing processes.

      METCOMP, an ESA (European Space Agency) investigation, studied solidification in microgravity using transparent organic mixtures as stand-ins for metal alloys. Conducting the research in microgravity removed the influence of convection and other effects of gravity. Results help scientists better understand and validate models of solidification mechanisms, enabling better forecasting of microstructures and improving manufacturing processes.
      Image from the METCOMP investigation of how a metal alloy could look like as it solidifies. E-USOC Measuring the height of upper-atmospheric electrical discharges

      Researchers determined the height of a blue discharge from a thundercloud using ground-based electric field measurements and space-based optical measurements from Atmosphere-Space Interactions Monitor (ASIM). This finding helps scientists better understand how these high-altitude lightning-related events affect atmospheric chemistry and could help improve atmospheric models and climate and weather predictions.

      ESA’s ASIM is an Earth observation facility that studies severe thunderstorms and upper-atmospheric lighting events and their role in the Earth’s atmosphere and climate. Upper-atmospheric lightning, also known as transient luminous events, occurs well above the altitudes of normal lightning and storm clouds. The data collected by ASIM could support research on the statistical properties of many upper atmosphere lightning events, such as comparison of peak intensities of blue and red pulses with reports from lightning detection networks.
      An artist’s impression of a blue jet as observed from the International Space Station.Mount Visual/University of Bergen/DTU Modeling a complex neutron star

      Scientists report that they can use modeling of neutron star PSRJ1231−1411’s X-ray pulses to infer its mass and radius and narrow the possible behaviors of the dense matter at its core. This finding provides a better understanding of the composition and structure of these celestial objects, improving models that help answer questions about conditions in the universe.

      The Neutron star Interior Composition Explorer provides high-precision measurements of pulses of X-ray radiation from neutron stars. This particular neutron star presented challenges in finding a fit between models and data, possibly due to fundamental issues with its pulse profile. The authors recommend a program of simulations using synthetic data to determine whether there are fundamental issues with this type of pulse profile that could prevent efforts to obtain tighter and more robust constraints.
      Concentrators on the Neutron star Interior Composition Explorer instrument.NASAView the full article
    • By NASA
      Measurements from space support wildfire risk predictions

      Researchers demonstrated that data from the International Space Station’s ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) instrument played a significant role in the ability of machine learning algorithms to predict wildfire susceptibility. This result could help support development of effective strategies for predicting, preventing, monitoring, and managing wildfires.

      As the frequency and severity of wildfires increases worldwide, experts need reliable models of fire susceptibility to protect public safety and support natural resource planning and risk management. ECOSTRESS measures evapotranspiration, water use efficiency, and other plant-water dynamics on Earth. Researchers report that its water use efficiency data consistently emerged as the leading factor in predicting wildfires, with evaporative stress and topographic slope data also significant.
      This ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station evapotranspiration image of California’s Central Valley in May 2022 shows high water use (blue) and dry conditions (brown). NASA Combining instruments provides better emissions data

      Scientists found that averaging data from the International Space Station’s OCO‐3 and EMIT external instruments can accurately measure the rate of carbon dioxide emissions from power plants. This work could improve emissions monitoring and help communities respond to climate change.

      Carbon dioxide emissions from fossil fuel combustion make up nearly a third of human-caused emissions and are a major contributor to climate change. In many places, though, scientists do not know exactly how much carbon dioxide these sources emit. The Orbiting Carbon Observatory-3 or OCO-3 can quantify emissions over large areas and Earth Surface Mineral Dust Source Investigation data can help determine emissions from individual facilities. The researchers suggest future work continue to investigate the effect of wind conditions on measurements.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      The The Orbiting Carbon Observatory-3 data showing carbon dioxide concentrations in Los Angeles. NASA Thunderstorm phenomena observed from space

      Observations by the International Space Station’s Atmosphere-Space Interactions Monitor (ASIM) instrument during a tropical cyclone in 2019 provide insight into the formation and nature of blue corona discharges often observed at the tops of thunderclouds. A better understanding of such processes in Earth’s upper atmosphere could improve atmospheric models and weather and climate predictions.

      Scientists do not fully understand the conditions that lead to formation of blue corona discharges, bursts of electrical streamers, which are precursors to lightning. Observations from the ground are affected by scattering and absorption in the clouds. ASIM, a facility from ESA (European Space Agency), provides a unique opportunity for observing these high-atmosphere events from space.
      View of Atmosphere-Space Interactions Monitor, the white and blue box on the end of the International Space Station’s Columbus External Payload Facility. NASAView the full article
    • By USH
      During a live Fox News broadcast covering the intense Palisades wildfire in California, an unusual event captured viewers' attention. A camera aimed at the blazing inferno recorded a mysterious spherical object emerging suddenly from the middle of the flames. This object moved at a remarkable speed before vanishing over the treetops, leaving many wondering about its origin and purpose. 

      The object does not appear to be debris carried aloft by the fire’s updraft. Its trajectory and speed seem too controlled and deliberate to be a random effect of the wildfire. Additionally, the object shows no signs of explosion or disintegration, characteristics that might be expected if it were merely a piece of material affected by the intense heat. 
      Observers have ruled out common explanations such as birds, planes, or helicopters. The object’s rapid movement and apparent change in direction suggest advanced maneuverability, sparking comparisons to UFOs/UAPs. 
      With the growing number of reported sightings involving drones, orbs, and UFOs, the appearance of this potential UFO or drone in such an environment is especially intriguing. Could this object represent evidence of advanced technology monitoring Earth's natural disasters? Or is it an entirely natural but poorly understood phenomenon?
        View the full article
    • By NASA
      4 min read
      Astronaut Set to Patch NASA’s X-ray Telescope Aboard Space Station
      NASA astronaut Nick Hague will install patches to the agency’s NICER (Neutron star Interior Composition Explorer) X-ray telescope on the International Space Station as part of a spacewalk scheduled for Jan. 16. Hague, along with astronaut Suni Williams, will also complete other tasks during the outing.
      NICER will be the first NASA observatory repaired on-orbit since the last servicing mission for the Hubble Space Telescope in 2009.
      Hague and other astronauts, including Don Pettit, who is also currently on the space station, rehearsed the NICER patch procedures in the NBL (Neutral Buoyancy Laboratory), a 6.2-million-gallon indoor pool at NASA’s Johnson Space Center in Houston, in 2024. 
      NASA astronaut Nick Hague holds a patch for NICER (Neutron star Interior Composition Explorer) at the end of a T-handle tool during a training exercise on May 16, 2024, in the NBL (Neutral Buoyancy Laboratory) at NASA’s Johnson Space Center in Houston. NASA/NBL Dive Team Astronaut Nick Hague removes a patch from the caddy using a T-handle tool during a training exercise in the NBL at NASA Johnson on May 16, 2024. The booklet on his wrist has a schematic of the NICER telescope and where the patches will go.NASA/NBL Dive Team “We use the NBL to mimic, as much as possible, the conditions astronauts will experience while preforming a task during a spacewalk,” said Lucas Widner, a flight controller at KBR and NASA Johnson who ran the NICER NBL sessions. “Most projects outside the station focus on maintenance and upgrades to components like solar panels. It’s been exciting for all of us to be part of getting a science mission back to normal operations.”
      From its perch near the space station’s starboard solar array, NICER studies the X-ray sky, including erupting galaxies, black holes, superdense stellar remnants called neutron stars, and even comets in our solar system. 
      But in May 2023, NICER developed a “light leak.” Sunlight began entering the telescope through several small, damaged areas in the telescope’s thin thermal shields. During the station’s daytime, the light reaches the X-ray detectors, saturating sensors and interfering with NICER’s measurements of cosmic objects. The mission team altered their daytime observing strategy to mitigate the effect. 
      UAE (United Arab Emirates) astronaut Sultan Alneyadi captured this view of NICER from a window in the space station’s Poisk Mini-Research Module 2 in July 2023. Photos like this one helped the NICER team map the damage to the telescope’s thermal shields.NASA/Sultan Alneyadi Some of NICER’s damaged thermal shields (circled) are visible in this photograph.NASA/Sultan Alneyadi The team also developed a plan to cover the largest areas of damage using wedge-shaped patches. Hague will slide the patches into the telescope’s sunshades and lock them into place. 
      “We designed the patches so they could be installed either robotically or by an astronaut,” said Steve Kenyon, NICER’s mechanical engineering lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “They’re installed using a tool called a T-handle that the astronauts are already familiar with.”
      The NBL contains life-size mockups of sections of the space station. Under the supervision of a swarm of scuba divers, a pair of astronauts rehearse exiting and returning through an airlock, traversing the outside of the station, and completing tasks. 
      For the NICER repair, the NBL team created a full-scale model of NICER and its surroundings near the starboard solar array. Hague, Pettit, and other astronauts practiced taking the patches out of their caddy, inserting them into the sunshades, locking them into place, and verifying they were secure. 
      The task took just under an hour each time, which included the time astronauts needed to travel to NICER, set up their tools, survey the telescope for previously undetected damage, complete the repair, and clean up their tools. 
      Practice runs also provided opportunities for the astronauts to troubleshoot how to position themselves so they could reach NICER without touching it too often and for flight controllers to identify safety concerns around the repair. 
      Astronaut Don Pettit simulates taking pictures of the NICER telescope mockup during a training exercise in the NBL at NASA Johnson on May 16, 2024.NASA/NBL Dive Team Astronaut Don Pettit removes a patch from the caddy during a training exercise in the NBL at NASA Johnson on May 16, 2024.NASA/NBL Dive Team Being fully submerged in a pool is not the same as being in space, of course, so some issues that arose were “pool-isms.” For example, astronauts sometimes drifted upward while preparing to install the patches in a way unlikely to happen in space. 
      Members of the NICER team, including Kenyon and the mission’s principal investigator, Keith Gendreau at NASA Goddard, supported the NBL practice runs. They helped answer questions about the physical aspects of the telescope, as well as science questions from the astronauts and flight controllers. NICER is the leading source of science results on the space station. 
      “It was awesome to watch the training sessions and be able to debrief with the astronauts afterward,” Gendreau said. “There isn’t usually a lot of crossover between astrophysics science missions and human spaceflight. NICER will be the first X-ray telescope serviced by astronauts. It’s been an exciting experience, and we’re all looking forward to the spacewalk where it will all come together.”
      The NICER telescope is an Astrophysics Mission of Opportunity within NASA’s Explorers Program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined, and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supported the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation.
      Download high-resolution images and videos of NICER at NASA’s Scientific Visualization Studio. By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
      Details
      Last Updated Jan 08, 2025 Related Terms
      Astrophysics Black Holes Goddard Space Flight Center International Space Station (ISS) ISS Research Johnson Space Center Neutron Stars NICER (Neutron star Interior Composition Explorer) Pulsars The Universe View the full article
  • Check out these Videos

×
×
  • Create New...