Members Can Post Anonymously On This Site
Webb takes its first exoplanet image
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Project F.I.R.E. team, part of Falcon Research Labs and current students at Cerritos Community College in California, is researching the use of drones to extinguish fires as part of a NASA research award called the University Student Research Challenge. From left, Logan Stahl, Juan Villa, Angel Ortega, Larisa Mayoral, Jenny Escobar, and Paola Mayoral-Jimenez.Falcon Research Labs Great ideas, and the talent and passion that bring them to life, can be found anywhere.
In that spirit, NASA’s University Student Research Challenge (USRC) in 2024 selected its first group of community college students to contribute original research to the agency’s transformative vision for 21st century aviation.
The student-led group, from Cerritos Community College in California, is researching a new method of safely extinguishing wildfires using eco-friendly pellets dropped from uncrewed drones they call Project F.I.R.E. (Fire Intervention Retardant Expeller).
“Wildfires are a major problem we’re facing today,” said Angel Ortega, project technical director and lead research engineer for Project F.I.R.E. at Cerritos Community College. “The goal of our research is to demonstrate that our prototype drone with biodegradable fire retardant can successfully put out a controlled fire.”
A Community College First
Until now, USRC has only selected participants from traditional four-year institutions, compared to a two-year community college. This award exemplifies the activity’s goal of giving all of tomorrow’s aeronautical innovators a shot at NASA support for their research ideas.
“The University Innovation (UI) project provides a number of different avenues for students to contribute to aeronautics,” said Steven Holz, who manages the USRC award process. “All of the opportunities are different and help build knowledge and skills that would be advantageous to those wanting to continue working on UI opportunities or within NASA.”
This award is one of two from NASA’s USRC selected in 2024. The team received the USRC award prior to the devastating Los Angeles fires of January 2025.
“Our thoughts are with everyone affected by this tragedy,” members of the team said in a statement. “As a team, we are deeply committed to advancing innovative solutions to enhance safety and resilience, working toward a future where communities are better protected against such disasters.”
Innovating a Solution
The six team members of Project F.I.R.E. are driven by an ethic of public service. As fires continue to affect communities in their native southern California, they are applying their skills to finding a way to help.
“We want to get the public inspired that there are possible solutions at hand,” Ortega said. “And the work we’re doing now can hopefully build towards that bigger goal of a widespread solution.”
The research they are pursuing involves dropping biodegradable pellets into fires from uncrewed, autonomous drones. The pellets, upon reaching the ground, combine chemical ingredients which create a foamlike solution of fire retardant that will not contaminate the environment after the fire is extinguished.
Project F.I.R.E.’s innovative idea for fire suppression involves releasing eco-friendly foam pellets from uncrewed drones.Falcon Research Labs The team is keen to support firefighters and wildland fire managers and keep them safe while managing these natural disasters. The group has met with firefighters, discussed the idea with them, and received useful feedback on how to make the technology work best in the field.
Though the group is only at the outset of the research, their idea has existed for longer.
Blue Skies Forever
Prior to applying for a USRC, Project F.I.R.E. also presented at NASA’s 2024 Gateway to Blue Skies competition, in which they won the “Future Game-Changer” award.
Through Gateway to Blue Skies, NASA challenges college students to research climate-friendly technologies and applications related to the future of aviation and present them at an annual forum.
Following Project F.I.R.E.’s participation in the forum, they applied for a USRC grant to begin turning their vision into reality.
“Our experience with NASA has been incredibly supportive and inspiring,” said Logan Stahl, the project’s operations director. “We thought competing against some of the other schools would be intimidating, but the experience we’ve had is the complete opposite. Everyone was very welcoming, and the NASA representatives communicated with us and asked questions.”
The USRC support will allow the team to build on their earlier foundations, they said.
“Because Gateway to Blue Skies is more conceptual, it let us bring our idea to the table. Now through USRC, we can start building hands-on and make our idea come to life,” said Larisa Mayoral, chemical engineer and laboratory operations manager.
The Project F.I.R.E. team receives their “Future Game-Changer” award during the 2024 Gateway to Blue Skies forum held at NASA’s Ames Research Center in California.NASA / Brandon Torres The team expressed gratitude, speaking as community college students, for their ability to participate in and contribute research at a level that competes with top-brass universities.
“We’re very appreciative of our college and NASA providing us this opportunity,” said Paola Mayoral Jimenez, laboratory coordinator and safety manager. “By doing this project, we hope to shine a light on community colleges, their students, and what they have to offer.”
Complete details on USRC awardees and solicitations, such as what to include in a proposal and how to submit it, are available on the NASA Aeronautics Research Mission Directorate solicitation page.
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
3 min read NASA Selects New Round of Student-Led Aviation Research Awards
Article 5 days ago 3 min read NASA’s X-59 Turns Up Power, Throttles Through Engine Tests
Article 2 weeks ago 3 min read NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Feb 23, 2025 EditorJim BankeContactAngela Surgenorangela.d.surgenor@nasa.gov Related Terms
Aeronautics Aeronautics Research Mission Directorate Flight Innovation Transformative Aeronautics Concepts Program University Innovation University Student Research Challenge View the full article
-
By Space Force
The DARC partnership is completing construction at the first of three sites that will host a global network of advanced ground-based sensors.
View the full article
-
By NASA
5 min read
Ultra-low-noise Infrared Detectors for Exoplanet Imaging
A linear-mode avalanche photodiode array in the test dewar. The detector is the dark square in the center. Michael Bottom, University of Hawai’i One of the ultimate goals in astrophysics is the discovery of Earth-like planets that are capable of hosting life. While thousands of planets have been discovered around other stars, the vast majority of these detections have been made via indirect methods, that is, by detecting the effect of the planet on the star’s light, rather than detecting the planet’s light directly. For example, when a planet passes in front of its host star, the brightness of the star decreases slightly.
However, indirect methods do not allow for characterization of the planet itself, including its temperature, pressure, gravity, and atmospheric composition. Planetary atmospheres may include “biosignature” gases like oxygen, water vapor, carbon dioxide, etc., which are known to be key ingredients needed to support life as we know it. As such, direct imaging of a planet and characterization of its atmosphere are key to understanding its potential habitability.
But the technical challenges involved in imaging Earth-like extrasolar planets are extreme. First such planets are detected only by observing light they reflect from their parent star, and so they typically appear fainter than the stars they orbit by factors of about 10 billion. Furthermore, at the cosmic distances involved, the planets appear right next to the stars. A popular expression is that exoplanet imaging is like trying to detect a firefly three feet from a searchlight from a distance of 300 miles.
Tremendous effort has gone into developing starlight suppression technologies to block the bright glare of the star, but detecting the light of the planet is challenging in its own right, as planets are incredibly faint. One way to quantify the faintness of planetary light is to understand the photon flux rate. A photon is an indivisible particle of light, that is, the minimum detectable amount of light. On a sunny day, approximately 10 thousand trillion photons enter your eye every second. The rate of photons entering your eye from an Earth-like exoplanet around a nearby star would be around 10 to 100 per year. Telescopes with large mirrors can help collect as much of this light as possible, but ultra-sensitive detectors are also needed, particularly for infrared light, where the biosignature gases have their strongest effects. Unfortunately, state-of-the-art infrared detectors are far too noisy to detect the low level of light emitted from exoplanets.
With support from NASA’s Astrophysics Division and industrial partners, researchers at the University of Hawai’i are developing a promising detector technology to meet these stringent sensitivity requirements. These detectors, known as avalanche photodiode arrays, are constructed out of the same semiconductor material as conventional infrared sensors. However, these new sensors employ an extra “avalanche” layer that takes the signal from a single photon and multiplies it, much like an avalanche can start with a single snowball and quickly grow it to the size of a boulder. This signal amplification occurs before any noise from the detector is introduced, so the effective noise is proportionally reduced. However, at high avalanche levels, photodiodes start to behave badly, with noise exponentially increasing, which negates any benefits of the signal amplification. Late University of Hawai’i faculty member Donald Hall, who was a key figure in driving technology for infrared astronomy, realized the potential use of avalanche photodiodes for ultra-low-noise infrared astronomy with some modifications to the material properties.
University of Hawai’i team members with cryogenic dewar used to test the sensors. From left to right, Angelu Ramos, Michael Bottom, Shane Jacobson, Charles-Antoine Claveau. Michael Bottom, University of Hawai’i The most recent sensors benefit from a new design including a graded semiconductor bandgap that allows for excellent noise performance at moderate amplification, a mesa pixel geometry to reduce electronic crosstalk, and a read-out integrated circuit to allow for short readout times. “It was actually challenging figuring out just how sensitive these detectors are,” said Michael Bottom, associate professor at the University of Hawai’i and lead of development effort. “Our ‘light-tight’ test chamber, which was designed to evaluate the infrared sensors on the James Webb Space Telescope, was supposed to be completely dark. But when we put these avalanche photodiodes in the chamber, we started seeing light leaks at the level of a photon an hour, which you would never be able to detect using the previous generation of sensors.”
The new designs have a format of one megapixel, more than ten times larger than the previous iteration of sensors, and circuitry that allows for tracking and subtracting any electronic drifts. Additionally, the pixel size and control electronics are such that these new sensors could be drop-in replacements for the most common infrared sensors used on the ground, which would give new capabilities to existing instruments.
Image of the Palomar-2 globular cluster located in the constellation of Auriga, taken with the linear-mode avalanche photodiode arrays, taken from the first on-sky testing of the sensors using the University of Hawai’i’s 2.2 meter telescope. Michael Bottom, University of Hawai’i Last year, the team took the first on-sky images from the detectors, using the University of Hawai’i’s 2.2-meter telescope. “It was impressive to see the avalanche process on sky. When we turned up the gain, we could see more stars appear,” said Guillaume Huber, a graduate student working on the project. “The on-sky demonstration was important to prove the detectors could perform well in an operational environment,” added Michael Bottom.
According to the research team, while the current sensors are a major step forward, the megapixel format is still too small for many science applications, particularly those involving spectroscopy. Further tasks include improving detector uniformity and decreasing persistence. The next generation of sensors will be four times larger, meeting the size requirements for the Habitable Worlds Observatory, NASA’s next envisioned flagship mission, with the goals of imaging and characterizing Earth-like exoplanets.
Project Lead: Dr. Michael Bottom, University of Hawai’i
Sponsoring Organization: NASA Strategic Astrophysics Technology (SAT) Program
Share
Details
Last Updated Feb 18, 2025 Related Terms
Technology Highlights Astrophysics Astrophysics Division Science-enabling Technology Explore More
6 min read Webb Reveals Rapid-Fire Light Show From Milky Way’s Central Black Hole
Article
5 mins ago
2 min read Hubble Captures a Cosmic Cloudscape
Article
4 days ago
5 min read Webb Maps Full Picture of How Phoenix Galaxy Cluster Forms Stars
Article
5 days ago
View the full article
-
By NASA
Firefly’s Blue Ghost lunar lander captured a bright image of the Moon’s South Pole (on the far left) through the cameras on its top deck, while it travels to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.Credits: Firefly Aerospace With a suite of NASA science and technology on board, Firefly Aerospace is targeting no earlier than 3:45 a.m. EST on Sunday, March 2, to land the Blue Ghost lunar lander on the Moon. Blue Ghost is slated to touch down near Mare Crisium, a plain in the northeast quadrant on the near side of the Moon, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence.
Live coverage of the landing, jointly hosted by NASA and Firefly, will air on NASA+ starting at 2:30 a.m. EST, approximately 75 minutes before touchdown on the Moon’s surface. Learn how to watch NASA content through a variety of platforms, including social media. The broadcast will also stream on Firefly’s YouTube channel. Coverage will include live streaming and blog updates as the descent milestones occur.
Accredited media interested in attending the in-person landing event hosted by Firefly in the Austin, Texas, area may request media credentials through this form by Monday, Feb. 24.
Following the landing, NASA and Firefly will host a news conference to discuss the mission and science opportunities that lie ahead as they begin lunar surface operations. The time of the briefing will be shared after touchdown.
Blue Ghost launched Jan. 15, at 1:11 a.m. EST on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The lander is carrying a suite of 10 NASA scientific investigations and technology demonstrations, which will provide insights into the Moon’s environment and test technologies to support future astronauts landing safely on the lunar surface, as well as Mars.
NASA continues to work with multiple American companies to deliver science and technology to the lunar surface through the agency’s CLPS initiative. This pool of companies may bid on contracts for end-to-end lunar delivery services, including payload integration and operations, launching from Earth, and landing on the surface of the Moon. NASA’s CLPS contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum value of $2.6 billion through 2028. In February 2021, the agency awarded Firefly this delivery of 10 NASA science investigations and technology demonstrations to the Moon using its American-designed and -manufactured lunar lander for approximately $93.3 million (modified to $101.5 million).
Through the Artemis campaign, commercial robotic deliveries will perform science experiments, test technologies, and demonstrate capabilities on and around the Moon to help NASA explore in advance of Artemis Generation astronaut missions to the lunar surface, and ultimately crewed missions to Mars.
Watch, engage on social media
Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts:
X: @NASA, @NASA_Johnson, @NASAArtemis, @NASAMoon
Facebook: NASA, NASAJohnsonSpaceCenter, NASAArtemis
Instagram: @NASA, @NASAJohnson, @NASAArtemis
For more information about the agency’s Commercial Lunar Payload Services initiative:
https://www.nasa.gov/clps
-end-
Karen Fox / Alise Fisher
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Share
Details
Last Updated Feb 14, 2025 LocationNASA Headquarters Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon View the full article
-
By NASA
5 Min Read Webb Maps Full Picture of How Phoenix Galaxy Cluster Forms Stars
Spectroscopic data collected from NASA’s James Webb Space Telescope is overlayed on an image of the Phoenix cluster that combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory and the Very Large Array (VLA) radio telescope. Credits:
NASA, CXC, NRAO, ESA, M. McDonald (MIT), M. Reefe (MIT), J. Olmsted (STScI) Discovery proves decades-old theory of galaxy feeding cycle.
Researchers using NASA’s James Webb Space Telescope have finally solved the mystery of how a massive galaxy cluster is forming stars at such a high rate. The confirmation from Webb builds on more than a decade of studies using NASA’s Chandra X-ray Observatory and Hubble Space Telescope, as well as several ground-based observatories.
The Phoenix cluster, a grouping of galaxies bound together by gravity 5.8 billion light-years from Earth, has been a target of interest for astronomers due to a few unique properties. In particular, ones that are surprising: a suspected extreme cooling of gas and a furious star formation rate despite a roughly 10 billion solar mass supermassive black hole at its core. In other observed galaxy clusters, the central supermassive black hole powers energetic particles and radiation that prevents gas from cooling enough to form stars. Researchers have been studying gas flows within this cluster to try to understand how it is driving such extreme star formation.
Image A: Phoenix Cluster (Hubble, Chandra, VLA Annotated)
Spectroscopic data collected from NASA’s James Webb Space Telescope is overlayed on an image of the Phoenix cluster that combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory and the Very Large Array (VLA) radio telescope. Webb’s powerful sensitivity in the mid-infrared detected the cooling gas that leads to a furious rate of star formation in this massive galaxy cluster. Credit: NASA, CXC, NRAO, ESA, M. McDonald (MIT), M. Reefe (MIT), J. Olmsted (STScI) “We can compare our previous studies of the Phoenix cluster, which found differing cooling rates at different temperatures, to a ski slope,” said Michael McDonald of the Massachusetts Institute of Technology in Cambridge, principal investigator of the program. “The Phoenix cluster has the largest reservoir of hot, cooling gas of any galaxy cluster — analogous to having the busiest chair lift, bringing the most skiers to the top of the mountain. However, not all of those skiers were making it down the mountain, meaning not all the gas was cooling to low temperatures. If you had a ski slope where there were significantly more people getting off the ski lift at the top than were arriving at the bottom, that would be a problem!”
To date, in the Phoenix cluster, the numbers weren’t adding up, and researchers were missing a piece of the process. Webb has now found those proverbial skiers at the middle of the mountain, in that it has tracked and mapped the missing cooling gas that will ultimately feed star formation. Most importantly, this intermediary warm gas was found within cavities tracing the very hot gas, a searing 18 million degrees Fahrenheit, and the already cooled gas around 18,000 degrees Fahrenheit.
The team studied the cluster’s core in more detail than ever before with the Medium-Resolution Spectrometer on Webb’s Mid-Infrared Instrument (MIRI). This tool allows researchers to take two-dimenstional spectroscopic data from a region of the sky, during one set of observations.
“Previous studies only measured gas at the extreme cold and hot ends of the temperature distribution throughout the center of the cluster,” added McDonald. “We were limited — it was not possible to detect the ‘warm’ gas that we were looking for. With Webb, we could do this for the first time.”
Image B: Phoenix Cluster (Hubble, Chandra, VLA)
This image of the Phoenix cluster combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory, and the Very Large Array radio telescope. X-rays from Chandra depict extremely hot gas in purple. Optical light data from Hubble show galaxies in yellow, and filaments of cooler gas where stars are forming in light blue. Outburst generated jets, represented in red, are seen in radio waves by the VLA radio telescope. NASA, CXC, NRAO, ESA, M. McDonald (MIT). A Quirk of Nature
Webb’s capability to detect this specific temperature of cooling gas, around 540,000 degrees Fahrenheit, is in part due to its instrumental capabilities. However, the researchers are getting a little help from nature, as well.
This oddity involves two very different ionized atoms, neon and oxygen, created in similar environments. At these temperatures, the emission from oxygen is 100 times brighter but is only visible in ultraviolet. Even though the neon is much fainter, it glows in the infrared, which allowed the researchers to take advantage of Webb’s advanced instruments.
“In the mid-infrared wavelengths detected by Webb, the neon VI signature was absolutely booming,” explained Michael Reefe, also of the Massachusetts Institute of Technology, lead author on the paper published in Nature. “Even though this emission is usually more difficult to detect, Webb’s sensitivity in the mid-infrared cuts through all of the noise.”
The team now hopes to employ this technique to study more typical galaxy clusters. While the Phoenix cluster is unique in many ways, this proof of concept is an important step towards learning about how other galaxy clusters form stars.The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Read the research paper published in Nature.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Hannah Braun hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Article: Large-scale Structures
Article: Phoenix Galaxy Cluster’s black hole
Article: Spectroscopy 101
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Stars
Galaxies
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.