Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      The second of the Meteosat Third Generation (MTG) satellites and the first instrument for the Copernicus Sentinel-4 mission are fully integrated and, having completed their functional and environmental tests, they are now ready to embark on their journey to the US for launch this summer.
      View the full article
    • By NASA
      Credit: NASA NASA’s Small Spacecraft Systems Virtual Institute (S3VI) is pleased to announce the official release of the highly anticipated 2024 State-of-the-Art Small Spacecraft Technology report. This significant accomplishment was made possible by the contributions of numerous dedicated people across NASA who graciously supported the preparation of the document as authors and reviewers. We also want to extend our gratitude to all the companies, universities, and organizations that provided content for this report.
      The 2024 report can be found online at https://www.nasa.gov/smallsat-institute/sst-soa. The report is also available in PDF format as a single document containing all report content as well as individual chapters available on their respective chapter webpages. This 2024 edition reflects updates in several chapters to include: the Formation Flying and Rendezvous and Proximity Operations section within the “Guidance, Navigation, and Control” chapter; the Additive Manufacturing section within the “Structures, Materials, and Mechanisms” chapter; the Free Space Optical Communications section within the “Communications” chapter; and the Hosted Orbital Services section within the “Complete Spacecraft Platforms” chapter.
      As in previous editions, the report contains a general overview of current state-of-the-art SmallSat technologies and their development status as discussed in open literature. The report is not intended to be an exhaustive representation of all technologies currently available to the small spacecraft community, nor does the inclusion of technologies in the report serve as an endorsement by NASA. Sources of publicly available date commonly used as sources in the development of the report include manufacturer datasheets, press releases, conference papers, journal papers, public filings with government agencies, and news articles. Readers are highly encouraged to reach out to companies for further information regarding the performance and maturity of described technologies of interest. During the report’s development, companies were encouraged to release test information and flight data when possible so it may be appropriately captured. It should be noted that technology maturity designations may vary with change to payload, mission requirements, reliability considerations, and the associated test/flight environment in which performance was demonstrated.
      Suggestions or corrections to the 2024 report toward a subsequent edition, should be submitted to the NASA Small Spacecraft Systems Virtual Institute Agency-SmallSat-Institute@mail.nasa.gov for consideration prior to the publication of the future edition. When submitting suggestions or corrections, please cite appropriate publicly accessible references. Private correspondence is not considered an adequate reference. Efforts are underway for the 2025 report and organizations are invited to submit technologies for consideration for inclusion by August 1, 2025.
      NASA’s Small Spacecraft Technology program within the Space Technology Mission Directorate funds the Small Spacecraft Systems Virtual Institute. 
      View the full article
    • By NASA
      NASA/Suni Williams Blue tentacle-like arms attached to an Astrobee free-flying robot grab onto a “capture cube” in this image from Feb. 4, 2025. The experimental grippers demonstrated autonomous detection and capture techniques that may be used to remove space debris and service satellites in low Earth orbit.
      The Astrobee system was designed and built at NASA’s Ames Research Center in Silicon Valley for use inside the International Space Station. The system consists of three cube-shaped robots (named Bumble, Honey, and Queen), software, and a docking station used for recharging. The robots use electric fans as a propulsion system that allows them to fly freely through the microgravity environment of the station. Cameras and sensors help them to “see” and navigate their surroundings. The robots also carry a perching arm that allows them to grasp station handrails to conserve energy or to grab and hold items.
      Image credit: NASA/Suni Williams
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Typically, asteroids — like the one depicted in this artist’s concept — originate from the main asteroid belt between the orbits of Mars and Jupiter, but a small population of near-Earth objects may also come from the Moon’s surface after being ejected into space by an impact.NASA/JPL-Caltech The near-Earth object was likely ejected into space after an impact thousands of years ago. Now it could contribute new insights to asteroid and lunar science.
      The small near-Earth object 2024 PT5 captured the world’s attention last year after a NASA-funded telescope discovered it lingering close to, but never orbiting, our planet for several months. The asteroid, which is about 33 feet (10 meters) wide, does not pose a hazard to Earth, but its orbit around the Sun closely matches that of our planet, hinting that it may have originated nearby.
      As described in a study published Jan. 14 in the Astrophysical Journal Letters, researchers have collected further evidence of 2024 PT5 being of local origin: It appears to be composed of rock broken off from the Moon’s surface and ejected into space after a large impact.
      “We had a general idea that this asteroid may have come from the Moon, but the smoking gun was when we found out that it was rich in silicate minerals — not the kind that are seen on asteroids but those that have been found in lunar rock samples,” said Teddy Kareta, an astronomer at Lowell Observatory in Arizona, who led the research. “It looks like it hasn’t been in space for very long, maybe just a few thousand years or so, as there’s a lack of space weathering that would have caused its spectrum to redden.”
      The asteroid was first detected on Aug. 7, 2024, by the NASA-funded Sutherland, South Africa, telescope of the University of Hawai’i’s Asteroid Terrestrial-impact Last Alert System (ATLAS). Kareta’s team then used observations from the Lowell Discovery Telescope and the NASA Infrared Telescope Facility (IRTF) at the Mauna Kea Observatory in Hawai’i to show that the spectrum of reflected sunlight from the small object’s surface didn’t match that of any known asteroid type; instead, the reflected light more closely matched rock from the Moon.
      Not (Old) Rocket Science
      A second clue came from observing how the object moves. Along with asteroids, Space Age debris, such as old rockets from historic launches, can also be found in Earth-like orbits.
      The difference in their orbits has to do with how each type responds to solar radiation pressure, which comes from the momentum of photons — quantum particles of light from the Sun — exerting a tiny force when they hit a solid object in space. This momentum exchange from many photons over time can push an object around ever so slightly, speeding it up or slowing it down. While a human-made object, like a hollow rocket booster, will move like an empty tin can in the wind, a natural object, such as an asteroid, will be much less affected.
      Researchers studying asteroid 2024 PT5 have plotted its looping motion on two graphs. To a trained eye, they show that the object never gets captured by Earth’s gravity but, instead, lingers nearby before continuing its orbit around the Sun. NASA/JPL-Caltech To rule out 2024 PT5 being space junk, scientists at NASA’s Center for Near Earth Object Studies (CNEOS), which is managed by the agency’s Jet Propulsion Laboratory in Southern California, analyzed its motion. Their precise calculations of the object’s motion under the force of gravity ultimately enabled them to search for additional motion caused by solar radiation pressure. In this case, the effects were found to be too small for the object to be artificial, proving 2024 PT5 is most likely of natural origin.
      “Space debris and space rocks move slightly differently in space,” said Oscar Fuentes-Muñoz, a study coauthor and NASA postdoctoral fellow at JPL working with the CNEOS team. “Human-made debris is usually relatively light and gets pushed around by the pressure of sunlight. That 2024 PT5 doesn’t move this way indicates it is much denser than space debris.”
      Asteroid Lunar Studies
      The discovery of 2024 PT5 doubles the number of known asteroids thought to originate from the Moon. Asteroid 469219 Kamo’oalewa was found in 2016 with an Earth-like orbit around the Sun, indicating that it may also have been ejected from the lunar surface after a large impact. As telescopes become more sensitive to smaller asteroids, more potential Moon boulders will be discovered, creating an exciting opportunity not only for scientists studying a rare population of asteroids, but also for scientists studying the Moon.
      If a lunar asteroid can be directly linked to a specific impact crater on the Moon, studying it could lend insights into cratering processes on the pockmarked lunar surface. Also, material from deep below the lunar surface — in the form of asteroids passing close to Earth — may be accessible to future scientists to study.
      “This is a story about the Moon as told by asteroid scientists,” said Kareta. “It’s a rare situation where we’ve gone out to study an asteroid but then strayed into new territory in terms of the questions we can ask of 2024 PT5.”
      The ATLAS, IRTF, and CNEOS projects are funded by NASA’s planetary defense program, which is managed by the Planetary Defense Coordination Office at NASA Headquarters in Washington. 
      For more information about asteroids and comets, visit:
      https://www.jpl.nasa.gov/topics/asteroids/
      NASA Asteroid Experts Create Hypothetical Impact Scenario for Exercise NASA Researchers Discover More Dark Comets Lesson Plan: How to Explore an Asteroid News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Kevin Schindler
      Lowell Observatory Public Information Officer
      928-607-1387
      kevin@lowell.edu
      2025-007
      Share
      Details
      Last Updated Jan 22, 2025 Related Terms
      Asteroids Earth's Moon Jet Propulsion Laboratory Planetary Defense Planetary Defense Coordination Office Planetary Science Explore More
      5 min read How New NASA, India Earth Satellite NISAR Will See Earth
      Article 24 hours ago 4 min read NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech
      Article 1 day ago 4 min read NASA Scientists, Engineers Receive Presidential Early Career Awards 
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Pandora, NASA’s newest exoplanet mission, is one step closer to launch with the completion of the spacecraft bus, which provides the structure, power, and other systems that will enable the mission to carry out its work.
      Watch to learn more about NASA’s Pandora mission, which will revolutionize the study of exoplanet atmospheres.
      NASA’s Goddard Space Flight Center “This is a huge milestone for us and keeps us on track for a launch in the fall,” said Elisa Quintana, Pandora’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The bus holds our instruments and handles navigation, data acquisition, and communication with Earth — it’s the brains of the spacecraft.”  
      Pandora, a small satellite, will provide in-depth study of at least 20 known planets orbiting distant stars in order to determine the composition of their atmospheres — especially the presence of hazes, clouds, and water. This data will establish a firm foundation for interpreting measurements by NASA’s James Webb Space Telescope and future missions that will search for habitable worlds.
      Pandora’s spacecraft bus was photographed Jan. 10 within a thermal-vacuum testing chamber at Blue Canyon Technologies in Lafayette, Colorado. The bus provides the structure, power, and other systems that will enable the mission to help astronomers better separate stellar features from the spectra of transiting planets. NASA/Weston Maughan, BCT “We see the presence of water as a critical aspect of habitability because water is essential to life as we know it,” said Goddard’s Ben Hord, a NASA Postdoctoral Program Fellow who discussed the mission at the 245th meeting of the American Astronomical Society in National Harbor, Maryland. “The problem with confirming its presence in exoplanet atmospheres is that variations in light from the host star can mask or mimic the signal of water. Separating these sources is where Pandora will shine.”
      Funded by NASA’s Astrophysics Pioneers program for small, ambitious missions, Pandora is a joint effort between Lawrence Livermore National Laboratory in California and NASA Goddard.
      “Pandora’s near-infrared detector is actually a spare developed for the Webb telescope, which right now is the observatory most sensitive to exoplanet atmospheres,” Hord added. “In turn, our observations will improve Webb’s ability to separate the star’s signals from those of the planet’s atmosphere, enabling Webb to make more precise atmospheric measurements.”
      Astronomers can sample an exoplanet’s atmosphere when it passes in front of its star as seen from our perspective, an event called a transit. Part of the star’s light skims the atmosphere before making its way to us. This interaction allows the light to interact with atmospheric substances, and their chemical fingerprints — dips in brightness at characteristic wavelengths — become imprinted in the light.
      But our telescopes see light from the entire star as well, not just what’s grazing the planet. Stellar surfaces aren’t uniform. They sport hotter, unusually bright regions called faculae and cooler, darker regions similar to sunspots, both of which grow, shrink, and change position as the star rotates.
      An artist’s concept of the Pandora mission, seen here without the thermal blanketing that will protect the spacecraft, observing a star and its transiting exoplanet. NASA’s Goddard Space Flight Center/Conceptual Image Lab Using a novel all-aluminum, 45-centimeter-wide (17 inches) telescope, jointly developed by Livermore and Corning Specialty Materials in Keene, New Hampshire, Pandora’s detectors will capture each star’s visible brightness and near-infrared spectrum at the same time, while also obtaining the transiting planet’s near-infrared spectrum. This combined data will enable the science team to determine the properties of stellar surfaces and cleanly separate star and planetary signals.
      The observing strategy takes advantage of the mission’s ability to continuously observe its targets for extended periods, something flagship missions like Webb, which are in high demand, cannot regularly do.
      Over the course of its year-long prime mission, Pandora will observe at least 20 exoplanets 10 times, with each stare lasting a total of 24 hours. Each observation will include a transit, which is when the mission will capture the planet’s spectrum. 
      Pandora is led by NASA’s Goddard Space Flight Center. Lawrence Livermore National Laboratory provides the mission’s project management and engineering. Pandora’s telescope was manufactured by Corning and developed collaboratively with Livermore, which also developed the imaging detector assemblies, the mission’s control electronics, and all supporting thermal and mechanical subsystems. The infrared sensor was provided by NASA Goddard. Blue Canyon Technologies provided the bus and is performing spacecraft assembly, integration, and environmental testing. NASA’s Ames Research Center in California’s Silicon Valley will perform the mission’s data processing. Pandora’s mission operations center is located at the University of Arizona, and a host of additional universities support the science team.

      Download high-resolution video and images from NASA’s Scientific Visualization Studio

      By Francis Reddy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share








      Details
      Last Updated Jan 16, 2025 Related Terms
      Astrophysics Astrophysics Division Exoplanet Atmosphere Exoplanet Exploration Program Exoplanet Science Exoplanet Transits Exoplanets Goddard Space Flight Center Studying Exoplanets The Universe View the full article
  • Check out these Videos

×
×
  • Create New...