Jump to content

SpaceX + T-Mobile Update


SpaceX

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Science Launching on SpaceX's 31st Cargo Resupply Mission to the Space Station
    • By NASA
      NASA and its international partners are launching scientific investigations on SpaceX’s 31st commercial resupply services mission to the International Space Station including studies of solar wind, a radiation-tolerant moss, spacecraft materials, and cold welding in space. The company’s Dragon cargo spacecraft is scheduled to launch from NASA’s Kennedy Space Center in Florida.
      Read more about some of the research making the journey to the orbiting laboratory:
      Measuring solar wind
      The CODEX (COronal Diagnostic EXperiment) examines the solar wind, creating a globally comprehensive data set to help scientists validate theories for what heats the solar wind – which is a million degrees hotter than the Sun’s surface – and sends it streaming out at almost a million miles per hour.
      The investigation uses a coronagraph, an instrument that blocks out direct sunlight to reveal details in the outer atmosphere or corona. The instrument takes multiple daily measurements that determine the temperature and speed of electrons in the solar wind, along with the density information gathered by traditional coronagraphs. A diverse international team has been designing, building, and testing the instrument since 2019 at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Multiple missions have studied the solar wind, and CODEX could add important pieces to this complex puzzle. When the solar wind reaches Earth, it triggers auroras at the poles and can generate space weather storms that sometimes disrupt satellite and land-based communications and power grids on the ground. Understanding the source of the solar wind could help improve space-weather forecasts and response.
      A worker prepares the CODEX (COronal Diagnostic EXperiment) instrument for launch.NASA Antarctic moss in space
      A radiation tolerance experiment, ARTEMOSS, uses a live Antarctic moss, Ceratodon purpureus, to study how some plants better tolerate exposure to radiation and to examine the physical and genetic response of biological systems to the combination of cosmic radiation and microgravity. Little research has been done on how these two factors together affect plant physiology and performance, and results could help identify biological systems suitable for use in bioregenerative life support systems on future missions.
      Mosses grow on every continent on Earth and have the highest radiation tolerance of any plant. Their small size, low maintenance, ability to absorb water from the air, and tolerance of harsh conditions make them suitable for spaceflight. NASA chose the Antarctic moss because that continent receives high levels of radiation from the Sun.
      The investigation also could identify genes involved in plant adaptation to spaceflight, which might be engineered to create strains tolerant of deep-space conditions. Plants and other biological systems able to withstand the extreme conditions of space also could provide food and other necessities in harsh environments on Earth.
      A Petri plate holding Antarctic moss colonies is prepared for launch at Brookhaven National Laboratory. SETI Institute Exposing materials to space
      The Euro Material Ageing investigation from ESA (European Space Agency) includes two experiments studying how certain materials age while exposed to space. The first experiment, developed by CNES (Centre National d’Etudes Spatiales), includes materials selected from 15 European entities through a competitive evaluation process that considered novelty, scientific merit, and value for the material science and technology communities. The second experiment looks at organic samples and their stability or degradation when exposed to ultraviolet radiation not filtered by Earth’s atmosphere. The exposed samples are recovered and returned to Earth.
      Predicting the behavior and lifespan of materials used in space can be difficult because facilities on the ground cannot simultaneously test for all aspects of the space environment. These limitations also apply to testing organic compounds and minerals that are relevant for studying comets, asteroids, the surface of Mars, and the atmospheres of planets and moons. Results could support better design for spacecraft and satellites, including improved thermal control, and the development of sensors for research and industrial applications.
      Preparation of one of the Euro Material Ageing’s experiments for launch.Centre National d’Etudes Spatiales Repairing spacecraft from the inside
      Nanolab Astrobeat investigates using cold welding to repair perforations in the outer shell or hull of a spacecraft from the inside. Less force is needed to fuse metallic materials in space than on Earth, and cold welding could be an effective way to repair spacecraft.
      Some micrometeoroids and space debris traveling at high velocities could perforate the outer surfaces of spacecraft, possibly jeopardizing mission success or crew safety. The ability to repair impact damage from inside a spacecraft may be more efficient and safer for crew members. Results also could improve applications of cold welding on Earth as well.
      The investigation also involves a collaboration with cellist Tina Guo with support from New York University Abu Dhabi to store musical compositions on the Astrobeat computer. Investigators planned to stream this “Music from Space” from the space station to the International Astronautical Congress in Milan and to Abu Dhabi after the launch.
      The Nanolab Astrobeat computer during assembly prior to launch.Malta College of Arts, Science & Technology/ Leonardo Barilaro Download high-resolution photos and videos of the research mentioned in this article. 
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Station Benefits for Humanity
      Latest News from Space Station Research
      International Space Station
      View the full article
    • By NASA
      NASA’s Solar Dynamics Observatory captured this image of an X9.0 solar flare – as seen in the bright flash in the center – on Oct. 3, 2024. This is the largest flare of Solar Cycle 25 to date.Credit: NASA NASA and the National Oceanic and Atmospheric Administration (NOAA) will discuss the Sun’s activity and the progression of Solar Cycle 25 during a media teleconference at 2 p.m. EDT, Tuesday, Oct. 15. Tracking the solar cycle is a key part of better understanding the Sun and mitigating its impacts on technology and infrastructure as humanity explores farther into space.
      During the teleconference, experts from NASA, NOAA, and the international Solar Cycle 25 Prediction Panel, which is co-sponsored by both agencies, will discuss recent solar cycle progress and the forecast for the rest of this cycle.
      Audio of the teleconference will stream live on the agency’s website at:
      https://www.nasa.gov/live
      Participants include:
      Jamie Favors, director, NASA’s Space Weather Program Kelly Korreck, program scientist, NASA’s Heliophysics Division Elsayed Talaat, director, Office of Space Weather Observations, NOAA Bill Murtagh, program coordinator, NOAA’s Space Weather Prediction Center Lisa Upton, co-chair, Solar Cycle 25 Prediction Panel To participate in the media teleconference, media must RSVP no later than 12 p.m. on Oct. 15, to Abbey Interrante at: abbey.a.interrante@nasa.gov.  
      The Sun goes through regular cycles of activity lasting approximately 11 years. During the most active part of the cycle, known as solar maximum, the Sun can unleash immense explosions of light, energy, and solar radiation, all of which create conditions known as space weather. Space weather can affect satellites and astronauts in space, as well as communications systems such as radio and GPS — and power grids on Earth. When the Sun is most active, space weather events become more frequent. Solar activity, such as the storm in May 2024, has sparked displays of aurora and led to impacts on satellites and infrastructure in recent months.
      NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth. The NOAA Space Weather Prediction Center is the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts.
      For more information on how NASA studies the Sun and space weather, visit:  
      https://www.nasa.gov/sun
      -end-
      Karen Fox
      Headquarters, Washington
      202-358-1600
      karen.fox@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Erica Grow Cei
      NOAA’s National Weather Service, College Park, Md.
      202-853-6088
      erica.grow.cei@noaa.gov
      Share
      Details
      Last Updated Oct 08, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      The Sun Heliophysics Space Weather View the full article
    • By NASA
      The SpaceX Dragon spacecraft approaching the International Space StationCredits: NASA Media accreditation is open for the next launch to deliver NASA science investigations, supplies, and equipment to the International Space Station. This launch is the 31st SpaceX commercial resupply services mission to the orbital laboratory for the agency and will lift off on the company’s Falcon 9 rocket.
      NASA and SpaceX are targeting no earlier than Wednesday, Oct. 30, to launch the SpaceX Dragon spacecraft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
      Credentialing to cover prelaunch and launch activities is open to U.S. media. The application deadline for U.S. citizens is 11:59 p.m. EDT, Tuesday, Oct. 15. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation, or to request special logistical support, email: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact NASA’s Kennedy Space Center newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitor entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      Each resupply mission to the station delivers scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, significantly increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space.
      In addition to food, supplies, and equipment for the crew, Dragon will deliver several new experiments, including the Coronal Diagnostic Experiment, to examine solar wind and how it forms. Dragon also delivers Antarctic moss to observe the combined effects of cosmic radiation and microgravity on plants. Other investigations aboard include a device to test cold welding of metals in microgravity, and an investigation that studies how space impacts different materials.
      Crews have occupied the space station continuously since November 2000. In that time, 280 people from 23 countries have visited the orbital outpost. The space station is a springboard to NASA’s next great leap in exploration, including future missions to the Moon under Artemis, and ultimately, human exploration of Mars.
      Learn more about NASA’s commercial resupply missions at:
      https://www.nasa.gov/station
      -end-
      Claire O’Shea / Josh Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
      Stephanie Plucinsky / Steven Siceloff / Danielle Sempsrott
      Kennedy Space Center, Fla.
      321-876-2468
      stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Oct 03, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Kennedy Space Center SpaceX Commercial Resupply View the full article
    • By NASA
      NASA's SpaceX Crew-8: Science, Innovation, and Discovery
  • Check out these Videos

×
×
  • Create New...