Jump to content

Recommended Posts

Posted
This video is real 14 inch footage of real lunar constructed objects including newly found construction just on the outskirts of Mare Serenitatis. 

moon%20artificial%20structures.jpg

Sky-watcher Bruce Sees All shows a clear addition to each of the areas...filmed in 2016...compared with footage from August 2022...we not only see an addition (constructed) anomaly but the Apollo 17 supposed landing site also is filled with power lines or tunnels leading to energy sources.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Before Apollo astronauts set foot upon the Moon, much remained unknown about the lunar surface. While most scientists believed the Moon had a solid surface that would support astronauts and their landing craft, a few believed a deep layer of dust covered it that would swallow any visitors. Until 1964, no closeup photographs of the lunar surface existed, only those obtained by Earth-based telescopes. 
      NASA’s Jet Propulsion Laboratory in Pasadena, California, managed the Ranger program, a series of spacecraft designed to return closeup images before impacting on the Moon’s surface. Ranger 7 first accomplished that goal in July 1964. On Feb. 17, 1965, its successor Ranger 8 launched toward the Moon, and three days later returned images of the Moon. The mission’s success helped the country meet President John F. Kennedy’s goal of a human Moon landing before the end of the decade. 

      Schematic diagram of the Ranger 8 spacecraft, showing its major components. NASA/JPL The television system aboard Ranger 8 showing its six cameras.NASA/JPL. Launch of Ranger 8. NASA. Ranger 8 lifted off from Cape Kennedy, now Cape Canaveral, Florida, on Feb. 17, 1965. The Atlas-Agena rocket first placed the spacecraft into Earth orbit before sending it on a lunar trajectory. The next day, the spacecraft carried out a mid-course correction, and on Feb. 20, Ranger 8 reached the Moon. The spacecraft’s six cameras turned on as planned, about eight minutes earlier than its predecessor to obtain images comparable in resolution to ground-based photographs for calibration purposes. Ranger 8 took its first photograph at an altitude of 1,560 miles, and during its final 23 minutes of flight, the spacecraft sent back 7,137 images of the lunar surface. The last image, taken at an altitude of 1,600 feet and 0.28 seconds before Ranger 8 impacted at 1.67 miles per second, had a resolution of about five feet. The spacecraft impacted 16 miles from its intended target in the Sea of Tranquility, ending a flight of 248,900 miles. Scientists had an interest in this area of the Moon as a possible landing zone for a future human landing, and indeed Apollo 11 landed 44 miles southeast of the Ranger 8 impact site in July 1969.  
      Ranger 8’s first image from an altitude of 1,560 miles.NASA/JPL. Ranger 8 image from an altitude of 198 miles, showing craters Ritter and Sabine.NASA/JPL. Ranger 8’s final images, taken at an altitude as low as 1,600 feet. NASA/JPL. One more Ranger mission followed, Ranger 9, in March 1965. Television networks broadcast Ranger 9’s images of the Alphonsus crater and the surrounding area “live” as the spacecraft approached its impact site in the crater – letting millions of Americans see the Moon up-close as it happened. Based on the photographs returned by the last three Rangers, scientists felt confident to move on to the next phase of robotic lunar exploration, the Surveyor series of soft landers. The Ranger photographs provided confidence that the lunar surface could support a soft-landing and that the Sea of Tranquility presented a good site for the first human landing. A little more than four years after the final Ranger images, Apollo 11 landed the first humans on the Moon. 

      Impact sites of Rangers 7, 8, and 9. NASA/JPL. The Ranger 8 impact crater, marked by the blue circle, photographed by Lunar Orbiter 2 in 1966.NASA/JPL. Lunar Reconnaissance Orbiter image of the Ranger 8 impact crater, taken in 2012 at a low sun angle.NASA/Goddard Space Flight Center/Arizona State University. The impacts of the Ranger probes left visible craters on the lunar surface, later photographed by orbiting spacecraft. Lunar Orbiter 2 and Apollo 16 both imaged the Ranger 8 impact site at relatively low resolution in 1966 and 1972, respectively. The Lunar Reconnaissance Orbiter imaged the crash site in greater detail in 2012. 
      Watch a brief video about the Ranger 8 impact on the Moon. 

      Explore More
      5 min read 60 Years Ago: Ranger 7 Photographs the Moon
      Article 7 months ago 8 min read 55 Years Ago: Apollo 11’s One Small Step, One Giant Leap
      Article 7 months ago 4 min read NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training
      At first glance, it seems like a scene from an excursion on the Moon’s surface…except…
      Article 5 months ago View the full article
    • By NASA
      With two months to go before flight, the Apollo 13 prime crew of James Lovell, Thomas Mattingly, Fred Haise, and backups John Young, John Swigert, and Charles Duke continued to train for the 10-day mission planned to land in the Fra Mauro highlands region of the Moon. Engineers continued to prepare the Saturn V rocket and spacecraft at the launch pad for the April 11, 1970, liftoff and completed the Flight Readiness Test of the vehicle. All six astronauts spent many hours in flight simulators training while the Moon walkers practiced landing the Lunar Module and rehearsed their planned Moon walks. The crew for the next Moon landing mission, Apollo 14, participated in a geology field trip as part of their training for the flight then planned for October 1970. Meanwhile, NASA released Apollo 12 lunar samples to scientists and the Apollo 12 crew set off on a Presidential world goodwill tour.  
      At NASA’s Kennedy Space Center in Florida, engineers completed the Flight Readiness Test of the Apollo 13 Saturn V on Feb. 26. The test ensured that all systems are flight ready and compatible with ground support equipment, and the astronauts simulated portions of the countdown and powered flight. Successful completion of the readiness test cleared the way for a countdown dress rehearsal at the end of March. 
      John Young prepares for a flight aboard the Lunar Landing Training Vehicle.NASA John Young after a training flight aboard the landing trainer. NASA Fred Haise prepares for a flight at the Lunar Landing Research Facility. NASA One of the greatest challenges astronauts faced during a lunar mission entailed completing a safe landing on the lunar surface. In addition to time spent in simulators, Apollo mission commanders and their backups trained for the final few hundred feet of the descent using the Lunar Landing Training Vehicle at Ellington Air Force Base near the Manned Spacecraft Center, now NASA’s Johnson Space Center, in Houston. Bell Aerosystems of Buffalo, New York, built the trainer for NASA to simulate the flying characteristics of the Lunar Module. Lovell and Young completed several flights in February 1970. Due to scheduling constraints with the trainer, lunar module pilots trained for their role in the landing using the Lunar Landing Research Facility at NASA’s Langley Research Center in Hampton, Virginia. Haise and Duke completed training sessions at the Langley facility in February. 

      Charles Duke practices Lunar Module egress during a KC-135 parabolic flight. NASA Charles Duke rehearses unstowing equipment from the Lunar Module during a KC-135 parabolic flight. NASA The astronauts trained for moonwalks with parabolic flights aboard NASA’s KC-135 aircraft that simulated the low lunar gravity, practicing their ladder descent to the surface. On the ground, they rehearsed the moonwalks, setting up the American flag and the large S-band communications antenna, and collecting lunar samples. Engineers improved their spacesuits to make the expected longer spacewalks more comfortable for the crew members by installing eight-ounce bags of water inside the helmets for hydration. 

      James Lovell, left, and Fred Haise practice setting up science equipment, the American flag, and the S-band antenna.NASA Lovell, left, and Haise practice collecting rock samples. NASA John Young, left, and Charles Duke train to collect rock samples. NASA Fred Haise, left, and James Lovell practice lowering the Apollo Lunar Surface Experiment Package from the Lunar Module.NASA Lovell, left, and Haise practice setting up the experiments. NASA Lovell, left, and Haise practice drilling for the Heat Flow Experiment. NASA During their 35 hours on the Moon’s surface, Lovell and Haise planned to conduct two four-hour spacewalks to set up the Apollo Lunar Surface Experiment Package (ALSEP), a suite of four investigations designed to collect data about the lunar environment after the astronauts’ departure, and to conduct geologic explorations of the landing site. The four experiments included the: 
      Charged Particle Lunar Environment Experiment designed to measure the flexes of charged particles  Cold Cathode Gauge Experiment designed to measure the pressure of the lunar atmosphere  Heat Flow Experiment designed to make thermal measurements of the lunar subsurface  Passive Seismic Experiment designed to measure any moonquakes, either naturally occurring or caused by artificial means   As an additional investigation, the astronauts planned to deploy and retrieve the Solar Wind Composition experiment, a sheet of aluminum foil to collect particles from the solar wind for analysis by scientists back on Earth after about 20 hours of exposure on the lunar surface. 

      Apollo 14 astronauts Eugene Cernan, left, Joe Engle, Edgar Mitchell, and Alan Shepard with geologist Richard Jahns in the Pinacates Mountains of northern Mexico. NASA Shepard, left, Engle, Mitchell, and Cernan training with the Modular Equipment Transporter, accompanied by geologist Jahns. NASA With one lunar mission just two months away, NASA continued preparations for the following flight, Apollo 14, then scheduled for October 1970 with a landing targeted for the Littrow region of the Moon, an area scientists believed to be of volcanic origin. Apollo 14 astronauts Alan Shepard, Stuart Roosa, and Edgar Mitchell and their backups Eugene Cernan, Ronald Evans, and Joe Engle  learned spacecraft systems in the simulators. Accompanied by a team of geologists led by Richard Jahns, Shepard, Mitchell, Cernan, and Engle participated in a geology expedition to the Pinacate Mountain Range in northern Mexico Feb. 14-18, 1970. The astronauts practiced using the Modular Equipment Transporter, a two-wheeled conveyance to transport tools and samples on the lunar surface. 

      Mail out of the Apollo 12 lunar samples. Apollo 12 astronauts Charles Conrad, left, Richard Gordon, and Alan Bean ride in a motorcade in Lima, Peru.NASA On Feb. 13, 1970, NASA began releasing Apollo 12 lunar samples to 139 U.S. and 54 international scientists in 16 countries, a total of 28.6 pounds of material. On Feb. 16, Apollo 12 astronauts Charles Conrad, Richard Gordon, and Alan Bean, accompanied by their wives and NASA and State Department officials, departed Houston’s Ellington Air Force Base for their 38-day Bullseye Presidential Goodwill World Tour. They first traveled to Latin America, making stops in Venezuela, Peru, Chile, and Panama before continuing on to Europe, Africa, and Asia. 
      The groundbreaking science and discoveries made during Apollo missions has pushed NASA to explore the Moon more than ever before through the Artemis program. Apollo astronauts set up mirror arrays, or “retroreflectors,” on the Moon to accurately reflect laser light beamed at them from Earth with minimal scattering or diffusion. Retroreflectors are mirrors that reflect the incoming light back in the same incoming direction. Calculating the time required for the beams to bounce back allowed scientists to precisely measure the Moon’s shape and distance from Earth, both of which are directly affected by Earth’s gravitational pull. More than 50 years later, on the cusp of NASA’s crewed Artemis missions to the Moon, lunar research still leverages data from those Apollo-era retroreflectors. 

      Explore More
      10 min read 55 Years Ago: Apollo 13, Preparations for the Third Moon Landing
      Article 2 months ago 23 min read 55 Years Ago: Apollo 12 Makes a Pinpoint Landing on the Moon
      Article 3 months ago 9 min read 60 Years Ago: The First Flight of the Lunar Landing Research Vehicle
      Article 4 months ago View the full article
    • By NASA
      Firefly Blue Ghost Mission 1 Lunar Landing (Official NASA Broadcast)
    • By NASA
      Firefly’s Blue Ghost lunar lander captured a bright image of the Moon’s South Pole (on the far left) through the cameras on its top deck, while it travels to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.Credits: Firefly Aerospace With a suite of NASA science and technology on board, Firefly Aerospace is targeting no earlier than 3:45 a.m. EST on Sunday, March 2, to land the Blue Ghost lunar lander on the Moon. Blue Ghost is slated to touch down near Mare Crisium, a plain in the northeast quadrant on the near side of the Moon, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence.
      Live coverage of the landing, jointly hosted by NASA and Firefly, will air on NASA+ starting at 2:30 a.m. EST, approximately 75 minutes before touchdown on the Moon’s surface. Learn how to watch NASA content through a variety of platforms, including social media. The broadcast will also stream on Firefly’s YouTube channel. Coverage will include live streaming and blog updates as the descent milestones occur.
      Accredited media interested in attending the in-person landing event hosted by Firefly in the Austin, Texas, area may request media credentials through this form by Monday, Feb. 24.
      Following the landing, NASA and Firefly will host a news conference to discuss the mission and science opportunities that lie ahead as they begin lunar surface operations. The time of the briefing will be shared after touchdown.  
      Blue Ghost launched Jan. 15, at 1:11 a.m. EST on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The lander is carrying a suite of 10 NASA scientific investigations and technology demonstrations, which will provide insights into the Moon’s environment and test technologies to support future astronauts landing safely on the lunar surface, as well as Mars.
      NASA continues to work with multiple American companies to deliver science and technology to the lunar surface through the agency’s CLPS initiative. This pool of companies may bid on contracts for end-to-end lunar delivery services, including payload integration and operations, launching from Earth, and landing on the surface of the Moon. NASA’s CLPS contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum value of $2.6 billion through 2028. In February 2021, the agency awarded Firefly this delivery of 10 NASA science investigations and technology demonstrations to the Moon using its American-designed and -manufactured lunar lander for approximately $93.3 million (modified to $101.5 million).
      Through the Artemis campaign, commercial robotic deliveries will perform science experiments, test technologies, and demonstrate capabilities on and around the Moon to help NASA explore in advance of Artemis Generation astronaut missions to the lunar surface, and ultimately crewed missions to Mars.
      Watch, engage on social media 
      Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts: 
      X: @NASA, @NASA_Johnson, @NASAArtemis, @NASAMoon 
      Facebook: NASA, NASAJohnsonSpaceCenter, NASAArtemis 
      Instagram: @NASA, @NASAJohnson, @NASAArtemis 
      For more information about the agency’s Commercial Lunar Payload Services initiative: 
      https://www.nasa.gov/clps
      -end- 
      Karen Fox / Alise Fisher 
      Headquarters, Washington 
      202-358-1600  
      karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov  
      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston 
      281-483-5111 
      natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov 
      Share
      Details
      Last Updated Feb 14, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon View the full article
    • By NASA
      The ring of light surrounding the center of the galaxy NGC 6505, captured by ESA’s Euclid telescope, is an example of an Einstein ring. NGC 6505 is acting as a gravitational lens, bending light from a galaxy far behind it. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, G. Anselmi, T. Li; CC BY-SA 3.0 IGO or ESA Standard Licence Euclid, an ESA (European Space Agency) mission with NASA contributions, has made a surprising discovery in our cosmic backyard: a phenomenon called an Einstein ring.
      An Einstein ring is light from a distant galaxy bending to form a ring that appears aligned with a foreground object. The name honors Albert Einstein, whose general theory of relativity predicts that light will bend and brighten around objects in space.
      In this way, particularly massive objects like galaxies and galaxy clusters serve as cosmic magnifying glasses, bringing even more distant objects into view. Scientists call this gravitational lensing.
      Euclid Archive Scientist Bruno Altieri noticed a hint of an Einstein ring among images from the spacecraft’s early testing phase in September 2023.
      “Even from that first observation, I could see it, but after Euclid made more observations of the area, we could see a perfect Einstein ring,” Altieri said. “For me, with a lifelong interest in gravitational lensing, that was amazing.”
      The ring appears to encircle the center of a well-studied elliptical galaxy called NGC 6505, which is around 590 million light-years from Earth in the constellation Draco. That may sound far, but on the scale of the entire universe, NGC 6505 is close by. Thanks to Euclid’s high-resolution instruments, this is the first time that the ring of light surrounding the galaxy has been detected.  
      Light from a much more distant bright galaxy, some 4.42 billion light-years away, creates the ring in the image. Gravity distorted this light as it traveled toward us. This faraway galaxy hasn’t been observed before and doesn’t yet have a name. 
      “An Einstein ring is an example of strong gravitational lensing,” explained Conor O’Riordan, of the Max Planck Institute for Astrophysics, Germany, and lead author of the first scientific paper analyzing the ring. “All strong lenses are special, because they’re so rare, and they’re incredibly useful scientifically. This one is particularly special, because it’s so close to Earth and the alignment makes it very beautiful.” 
      Einstein rings are a rich laboratory for scientists to explore many mysteries of the universe. For example, an invisible form of matter called dark matter contributes to the bending of light into a ring, so this is an indirect way to study dark matter. Einstein rings are also relevant to the expansion of the universe because the space between us and these galaxies — both in the foreground and the background — is stretching. Scientists can also learn about the background galaxy itself.
      “I find it very intriguing that this ring was observed within a well-known galaxy, which was first discovered in 1884,” said Valeria Pettorino, ESA Euclid project scientist. “The galaxy has been known to astronomers for a very long time. And yet this ring was never observed before. This demonstrates how powerful Euclid is, finding new things even in places we thought we knew well. This discovery is very encouraging for the future of the Euclid mission and demonstrates its fantastic capabilities.” 
      A close-up view of the center of the NGC 6505 galaxy, with the bright Einstein ring aligned with it, captured by ESA’s Euclid space telescope.ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, G. Anselmi, T. Li; CC BY-SA 3.0 IGO or ESA Standard Licence By exploring how the universe has expanded and formed over its cosmic history, Euclid will reveal more about the role of gravity and the nature of dark energy and dark matter. Dark energy is the mysterious force that appears to be causing the universe’s expansion. The space telescope will map more than a third of the sky, observing billions of galaxies out to 10 billion light-years. It is expected to find around 100,000 strong gravitational lenses.  
      “Euclid is going to revolutionize the field with all this data we’ve never had before,” added O’Riordan.  
      Although finding this Einstein ring is an achievement, Euclid must look for a different, less visually obvious type of gravitational lensing called “weak lensing” to help fulfil its quest of understanding dark energy. In weak lensing, background galaxies appear only mildly stretched or displaced. To detect this effect, scientists will need to analyze billions of galaxies.
      Euclid launched from Cape Canaveral, Florida, July 1, 2023, and began its detailed survey of the sky Feb. 14, 2024. The mission is gradually creating the most extensive 3D map of the universe yet. The Einstein ring find so early in its mission indicates Euclid is on course to uncover many more secrets of the universe. 
      More About Euclid
      Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium — consisting of more than 2,000 scientists from 300 institutes in 15 European countries, the United States, Canada, and Japan — is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme.
      Three NASA-supported science teams contribute to the Euclid mission. In addition to designing and fabricating the sensor-chip electronics for Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument, NASA’s Jet Propulsion Laboratory led the procurement and delivery of the NISP detectors as well. Those detectors, along with the sensor chip electronics, were tested at NASA’s Detector Characterization Lab at Goddard Space Flight Center in Greenbelt, Maryland. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech in Pasadena, California, will archive the science data and support U.S.-based science investigations. JPL is a division of Caltech.
      Media Contacts
      Elizabeth Landau
      Headquarters, Washington
      202-358-0845
      elandau@nasa.gov

      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...