Members Can Post Anonymously On This Site
The true story of Nikola Tesla told by Lt. Col. Thomas Bearden
-
Similar Topics
-
By NASA
NASA astronaut and Expedition 72 Flight Engineer Nick Hague pedals on the Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS), an exercise cycle located aboard the International Space Station’s Destiny laboratory module. CEVIS provides aerobic and cardiovascular conditioning through recumbent (leaning back position) or upright cycling activities.NASA Lee esta historia en español aquí.
The International Space Station is humanity’s home in space and a research station orbiting about 250 miles above the Earth. NASA and its international partners have maintained a continuous human presence aboard the space station for more than 24 years, conducting research that is not possible on Earth.
The people living and working aboard the microgravity laboratory also are part of the research being conducted, helping to address complex human health issues on Earth and prepare humanity for travel farther than ever before, including the Moon and Mars.
Here are a few frequently asked questions about how NASA and its team of medical physicians, psychologists, nutritionists, exercise scientists, and other specialized caretakers ensure astronauts’ health and fitness aboard the orbiting laboratory.
How long is a typical stay aboard the International Space Station?
A typical mission to the International Space Station lasts about six months, but can vary based on visiting spacecraft schedules, mission priorities, and other factors. NASA astronauts also have remained aboard the space station for longer periods of time. These are known as long-duration missions, and previous missions have given NASA volumes of data about long-term spaceflight and its effects on the human body, which the agency applies to any crewed mission.
During long-duration missions, NASA’s team of medical professionals focus on optimizing astronauts’ physical and behavioral health and their performance to help ensure mission success. These efforts also are helping NASA prepare for future human missions to the Moon, Mars, and beyond.
How does NASA keep astronauts healthy while in space?
NASA has a team of medical doctors, psychologists, and others on the ground dedicated to supporting the health and well-being of astronauts before, during, and after each space mission. NASA assigns physicians with specialized training in space medicine, called flight surgeons, to each crew once named to a mission. Flight surgeons oversee the health care and medical training as crew members prepare for their mission, and they monitor the crew’s health before, during, and after their mission to the space station.
How does NASA support its astronauts’ mental and emotional well-being while in space?
The NASA behavioral health team provides individually determined psychological support services for crew members and their families during each mission. Ensuring astronauts can thrive in extreme environments starts as early as the astronaut selection process, in which applicants are evaluated on competencies such as adaptability and resilience. Astronauts receive extensive training to help them use self-assessment tools and treatments to manage their behavioral health. NASA also provides training in expeditionary skills to prepare every astronaut for missions on important competencies, such as self-care and team care, communication, and leadership and followership skills.
To help maintain motivation and morale aboard the space station, astronauts can email, call, and video conference with their family and friends, receive crew care packages aboard NASA’s cargo resupply missions, and teleconference with a psychologist, if needed.
How does microgravity affect astronaut physical health?
In microgravity, without the continuous load of Earth’s gravity, there are many changes to the human body. NASA understands many of the human system responses to the space environment, including adaptations to bone density, muscle, sensory-motor, and cardiovascular health, but there is still much to learn. These spaceflight effects vary from astronaut to astronaut, so NASA flight surgeons regularly monitor each crew member’s health during a mission and individualize diet and fitness routines to prioritize health and fitness while in space.
Why do astronauts exercise in space?
Each astronaut aboard the orbiting laboratory engages in specifically designed, Earth-like exercise plans. To maintain their strength and endurance, crew members are scheduled for two and a half hours of daily exercise to support muscle, bone, aerobic, and sensorimotor health. Current equipment onboard the space station includes the ARED (Advanced Resistive Exercise Device), which mimics weightlifting; a treadmill, called T2; and the CEVIS (Cycle Ergometer with Vibration Isolation and Stabilization System) for cardiovascular exercise.
What roles do food and nutrition play in supporting astronaut health?
Nutrition plays a critical role in maintaining an astronaut’s health and optimal performance before, during, and after their mission. Food also plays a psychosocial role during an astronaut’s long-duration stay aboard the space station. Experts working in NASA’s Space Food Systems Laboratory at the agency’s Johnson Space Center in Houston develop foods that are nutritious and appetizing. Crew members also have the opportunity to supplement the menu with personal favorites and off-the-shelf items, which can provide a taste of home.
NASA astronaut and Expedition 71 Flight Engineer Tracy C. Dyson is pictured in the galley aboard the International Space Station’s Unity module showing off food packets from JAXA (Japan Aerospace Exploration Agency).NASA How does NASA know whether astronauts are getting the proper nutrients?
NASA’s nutritional biochemistry dietitians and scientists determine the nutrients (vitamins, minerals, calories) the astronauts require while in space. This team tracks what each crew member eats through a tablet-based tracking program, which each astronaut completes daily. The data from the app is sent to the dietitians weekly to monitor dietary intake. Analyzing astronaut blood and urine samples taken before, during, and after space missions is a crucial part of studying how their bodies respond to the unique conditions of spaceflight. These samples provide valuable insight into how each astronaut adapts to microgravity, radiation, and other factors that affect human physiology in space.
How do astronauts train to work together while in space?
In addition to technical training, astronauts participate in team skills training. They learn effective group living skills and how to look out for and support one another. Due to its remote and isolated nature, long-duration spaceflight can make teamwork difficult. Astronauts must maintain situational awareness and implement the flight program in an ever-changing environment. Therefore, effective communication is critical when working as a team aboard station and with multiple support teams on the ground. Astronauts also need to be able to communicate complex information to people with different professional backgrounds. Ultimately, astronauts are people living and working together aboard the station and must be able to do a highly technical job and resolve any interpersonal issues that might arise.
What happens if there is a medical emergency on the space station?
All astronauts undergo medical training and have regular contact with a team of doctors closely monitoring their health on the ground. NASA also maintains a robust pharmacy and a suite of medical equipment onboard the space station to treat various conditions and injuries. If a medical emergency requires a return to Earth, the crew will return in the spacecraft they launched aboard to receive urgent medical care on the ground.
Expedition 69 NASA astronaut Frank Rubio is seen resting and talking with NASA ISS Program Manager Joel Montalbano, kneeling left, NASA Flight Surgeon Josef Schmid, red hat, and NASA Chief of the Astronaut Office Joe Acaba, outside the Soyuz MS-23 spacecraft after he landed with Roscosmos cosmonauts Sergey Prokopyev and Dmitri Petelin in a remote area near the town of Zhezkazgan, Kazakhstan on Wednesday, Sept. 27, 2023.NASA/Bill Ingalls Learn more about NASA’s Human Health and Performance Directorate at:
www.nasa.gov/hhp
View the full article
-
By NASA
In the ever-evolving aerospace industry, collaboration and mentorship are vital for fostering innovation and growth. Recent achievements highlight the positive impact of Mentor-Protégé Agreements (MPA) facilitated by Jacobs Engineering Group, now known as Amentum Space Exploration Group. Two standout partnerships have demonstrated remarkable success and expansion, underscoring the value of such initiatives.
CODEplus and Amentum Space Exploration Group
The 24-Month MPA between CODEplus and Amentum Space Exploration Group has proven to be a game-changer. Recognized as the FY24 Marshall Space Flight Center (MSFC) Mentor-Protégé Agreement of the Year, this collaboration has significantly boosted CODEplus’s operations. Since the agreement’s inception on March 1, 2023, CODEplus has expanded its workforce to ten full-time employees and currently has two active job requisitions. This growth exemplifies the transformative potential of mentorship in nurturing small businesses within the aerospace sector.
KS Ware and Amentum Space Exploration Group / CH2M Hill
Another exemplary partnership involves KS Ware, which has benefitted from a 36-Month MPA with Amentum Space Exploration Group and CH2M Hill. This agreement has garnered accolades as both the FY23 NASA Agency Mentor-Protégé Agreement of the Year and the FY23 MSFC Mentor-Protégé Agreement of the Year. Through targeted business and technical counseling, KS Ware successfully launched a new drilling division in 2022 and expanded its offerings to include surveying services in 2023. The impact of this mentorship is evident, with a remarkable 30% growth rate reported for KS Ware.
These success stories highlight the critical role of Mentor-Protégé Agreements in empowering small businesses in the aerospace industry. By fostering collaboration and providing essential support, Amentum Space Exploration Group has not only strengthened its partnerships but also contributed to the broader growth and innovation landscape. As the aerospace sector continues to evolve, such initiatives will be essential in driving future success.
Published by: Tracy L. Hudspeth
View the full article
-
By NASA
Radioisotope Power Systems RPS Home About About RPS About the Program About Plutonium-238 Safety and Reliability For Mission Planners Contact Systems Overview Power Systems Thermal Systems Dynamic Radioisotope Power Missions Overview Timeline News Resources STEM Overview Power to Explore Contest Kid-Friendly Videos FAQ 5 Min Read After 60 Years, Nuclear Power for Spaceflight is Still Tried and True
Workers install one of three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. More › Credits:
NASA Editor’s Note: Originally published on June 21, 2021.
Six decades after the launch of the first nuclear-powered space mission, Transit IV-A, NASA is embarking on a bold future of human exploration and scientific discovery. This future builds on a proud history of safely launching and operating nuclear-powered missions in space.
“Nuclear power has opened the solar system to exploration, allowing us to observe and understand dark, distant planetary bodies that would otherwise be unreachable. And we’re just getting started,” said Dr. Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate. “Future nuclear power and propulsion systems will help revolutionize our understanding of the solar system and beyond and play a crucial role in enabling long-term human missions to the Moon and Mars.”
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
Space nuclear power to explore the deepest, dustiest, darkest, and most distant regions of our solar system and beyond. NASA From Humble Beginnings: Nuclear Power Spawns an Age of Scientific Discovery
On June 29, 1961, the John’s Hopkins University Applied Physics Laboratory launched the Transit IV-A Spacecraft. It was a U.S. Navy navigational satellite with a SNAP-3B radioisotope powered generator producing 2.7 watts of electrical power — about enough to light an LED bulb. Transit IV-A broke an APL mission-duration record and confirmed the Earth’s equator is elliptical. It also set the stage for ground-breaking missions that have extended humanity’s reach across the solar system.
Since 1961, NASA has flown more than 25 missions carrying a nuclear power system through a successful partnership with the Department of Energy (DOE), which provides the power systems and plutonium-238 fuel.
“The department and our national laboratory partners are honored to play a role in powering NASA’s space exploration activities,” said Tracey Bishop, deputy assistant secretary in DOE’s Office of Nuclear Energy. “Radioisotope Power Systems are a natural extension of our core mission to create technological solutions that meet the complex energy needs of space research, exploration, and innovation.”
There are only two practical ways to provide long-term electrical power in space: the light of the sun or heat from a nuclear source.
We couldn’t do the mission without it. No other technology exists to power a mission this far away from the Sun, even today.
Alan Stern
Principal Investigator, NASA’s New Horizons Mission to Pluto and Beyond
“As missions move farther away from the Sun to dark, dusty, and harsh environments, like Jupiter, Pluto, and Titan, they become impossible or extremely limited without nuclear power,” said Leonard Dudzinski, chief technologist for NASA’s Planetary Science Division and program executive for Radioisotope Power.
That’s where Radioisotope Power Systems, or RPS, come in. They are a category of power systems that convert heat generated by the decay of plutonium-238 fuel into electricity.
“These systems are reliable and efficient,” said June Zakrajsek, manager for NASA’s Radioisotope Power Systems Program office at Glenn Research Center in Cleveland. “They operate continuously over long-duration space missions regardless of sunlight, temperature, charged particle radiation, or surface conditions like thick clouds or dust. They’ve allowed us to explore from the Sun to Pluto and beyond.”
RPS powered the Apollo Lunar Surface Experiment Package. They’ve sustained Voyager 1 and 2 since 1977, and they kept Cassini-Huygens’ instruments warm as it explored frigid Saturn and its moon Titan.
Today, a Multi-Mission Thermoelectric Generator (MMRTG) powers the Perseverance rover, which is captivating the nation as it searches for signs of ancient life on Mars, and a single RTG is sustaining New Horizons as it ventures on its way out of the solar system 15 years after its launch.
“The RTG was and still is crucial to New Horizons,” said Alan Stern, New Horizons principal investigator from the Southwest Research Institute. “We couldn’t do the mission without it. No other technology exists to power a mission this far away from the Sun, even today.”
New Horizons carries seven scientific instruments and a radioisotope thermoelectric generator. The spacecraft weighs 1,060 pounds. NASA/JHUAPL Great Things to Come: Science and Human Exploration
Dragonfly, which is set to launch in 2028, is the next mission with plans to use an MMRTG. Part of NASA’s New Frontiers program, Dragonfly is an octocopter designed to explore and collect samples on Saturn’s largest moon, Titan, an ocean world with a dense, hazy atmosphere.
“RPS is really an enabling technology,” said APL’s Zibi Turtle, principal investigator for the upcoming Dragonfly mission. “Early missions like Voyager, Galileo, and Cassini that relied on RPS have completely changed our understanding and given us a geography of the distant solar system…Cassini gave us our first close-up look at the surface of Titan.”
According to Turtle, the MMRTG serves two purposes on Dragonfly: power output to charge the lander’s battery and waste heat to keep its instruments and electronics warm.
“Flight is a very high-power activity. We’ll use a battery for flight and science activities and recharge the battery using the MMRTG,” said Turtle. “The waste heat from the power system is a key aspect of our thermal design. The surface of Titan is very cold, but we can keep the interior of the lander warm and cozy using the heat from the MMRTG.”
As the scientific community continues to benefit from RPS, NASA’s Space Technology Mission Directorate is investing in new technology using reactors and low-enriched uranium fuel to enable a robust human presence on the Moon and eventually human missions to Mars.
Astronauts will need plentiful and continuous power to survive the long lunar nights and explore the dark craters on the Moon’s South Pole. A fission surface power system could provide enough juice to power robust operations. NASA is leading an effort, working with the DOE and industry to design a fission power system for a future lunar demonstration that will pave the way for base camps on the Moon and Mars.
NASA has also thought about viable ways to reduce the time it takes to travel to Mars, including nuclear propulsion systems.
As NASA advances its bold vision of exploration and scientific discovery in space, it benefits from 60 years of the safe use of nuclear power during spaceflight. Sixty years of enlightenment that all started with a little satellite called Transit IV-A.
News Media Contact
Jan Wittry
NASA’s Glenn Research Center
View the full article
-
By NASA
News Chief Rob Garner shares NASA Goddard’s story with the public, supporting writers and creators in the Office of Communications.
Name: Rob Garner
Title: News Chief
Formal Job Classification: Senior public affairs specialist
Organization: Office of Communications (Code 130)
Rob Garner has worked in the Office of Communications at NASA’s Goddard Space Flight Center in Greenbelt, Md., since 2007.NASA/Jamie Adkins What do you do and what is most interesting about your role here at Goddard?
I am responsible for helping take the great work going on at our center and sharing it with as many people as we can. My job is sort of like being an editor in chief. I try to set the tone for our storytelling and manage our publication schedule. Mostly I try to give our writers and other communicators the support they need to do their jobs — and then I try to get out of their way so they can do what they do best.
What is your educational background?
I have a B.A. in journalism from the University of Maryland, College Park, with a minor in astronomy, as well as a Master of Library Science degree focusing on archives, also from UMD.
Why did you want to be a journalist?
I sort of fell into the work that I am doing. In high school, I thought I would be a band director. I realized very quickly after high school that my enthusiasm for music did not align with my proficiency in it. Music remains an important hobby, but I needed to make a living doing something else.
I did not really enjoy writing until I got to college and had the opportunity to experience journalism. Tight writing, going straight to the source to get answers, accurate researching, it all appealed to me. I think journalism as a profession plays a critical role in ensuring an informed and functional society.
How did you come to work for Goddard?
After I graduated college, I worked weekends for a few months on the digital desk at WTOP radio, editing copy and updating their website. I was still looking for a fulltime gig, and I happened upon a newspaper classified for a position at Goddard. It called for a little bit of newswriting, a little bit of web editing, a little bit of science. Until that moment, I never imagined NASA could have a place for someone like me.
Goddard offered me a one-year fellowship in the Office of Communication (back then called Public Affairs) to do website editing for our Earth science team. The fellowship was renewed a few times, and eventually I became a general web editor, then also a social media editor, and eventually leader of the digital media team. In 2022, I became the news chief.
As news chief, what is your vision?
I take very seriously the part of NASA’s 1958 charter that charges the agency not just with conducting cutting-edge research, but also with sharing our work with the broadest possible audience. We must also drive home why what we do matters. The first thing I look for when reviewing copy is how well the piece addresses the “why.”
What makes a good science communicator?
Goddard has some 10,000 people, mostly researchers and engineers. Here, a successful science communicator is one who develops relationships among these different people and a deep understanding of their many projects. As communicators, we cannot do our jobs if we do not also have the trust of the people actually doing the science.
As a mentor, what is the one big piece of advice you give?
I tell our interns to jump in with both feet. So much of what we do and what we know cannot be found in any handbook or manual. So much of it is the institutional knowledge that each of us carries based on our own experiences.
Grab hold of the people who have the experience and take in as much as you can from them. Immersing in and embracing that Goddard culture is what will set apart a good colleague from a great one.
Everyone in the newsroom here knows that you are quite fond of the Associated Press (AP) Stylebook and the NASA Stylebook and Communications Manual. Can you please explain what they and why you are so fond of them?
One can think of AP style as an appendix or addendum to the dictionary, and the NASA style manual as an appendix or addendum to AP. The aim in having all of these mechanics standardized is to make it easier for the reader to read what you are writing. Even if one doesn’t know the rules governing serial comma usage, most of us can tell when what we’re reading is sloppy. Any time you force the reader to pause and review, there is a chance you will lose them. They may tune out and take their attention elsewhere.
These manuals lay out more than the mechanics of which states get abbreviated in what way, when to use semicolons, and when to use em dashes. They also give us guidelines about how to do our jobs, covering things like ethics, chain of command, and conflict resolution.
What do you enjoy best about your job?
My job is not just editing copy, fielding questions from reporters, or escorting groups for tours or documentary filming. I do enjoy all of that, but what I like most is that every day is different, and every day I learn something new. I love the variety of tasks and tactics that we use get our message out to the world. NASA plays a critical role in benefitting all of humanity by broadening our knowledge about the universe and our place in it. It’s personally very meaningful to me to have even a small role in that mission. And I enjoy working with a really great group of people.
You said in high school you thought you would become a band director. Have you kept up with playing?
In my free time, I do still play trumpet. For almost 20 years, I have played in community orchestras that draw repertoire from video game soundtracks. The past 10 years, I’ve been with the Washington Metropolitan Gamer Symphony Orchestra (WMGSO), along with my wife, who plays the violin. This group — well over 100 of us — originated when we were all in college, and we have continued together since then. What makes our group special is that we still do a lot of the orchestration ourselves, meaning that you cannot hear our music anywhere else. We meet once a week and perform three or four times a year throughout the D.C. area. We even have an album out, with another on the way soon.
Can you please tell us about your dog rescue volunteer work?
Since 2018, my wife and I have been involved with a couple area animal rescues. We typically take in newly weaned puppies and keep them for the weeks or months it takes for them to find their forever homes. While they are in our care, we keep them safe, fed, warm, and loved. We also socialize them as much as possible. The organizations take care of finding them homes through weekly adoption events.
My wife and I have three dogs of our own, two of which are rescues from this group. We have fostered hundreds over the years. I lost count somewhere north of 250 — and counting. I think it is important for everyone to find a way to make the world a better place. This is our way of doing that.
Garner and then-Goddard News Chief Ed Campion celebrating the latter’s retirement in 2018. Aloha shirt Fridays were a mainstay of Campion’s tenure.NASA/Bill Hrybyk Who would you like to thank for helping you?
That’s a long list! I’m forever grateful to Goddard’s executive producer, Wade Sisler, who saw something in babyface Rob Garner, nearly fresh out of school, and gave me a chance at a toehold in NASA.
I definitely want to thank Ed Campion, our retired former news chief and “minister of truth,” for all he did for me. When I first got to Goddard in 2007, Ed was one of the first people to take me under his wing and teach me about Goddard and NASA culture. Ed came through the agency during some very hard times, both shuttle accidents, and some very important highs, like the successful Hubble telescope repair missions. He worked at NASA Headquarters in Washington and also at Johnson Space Center in Houston. I learned a lot about how to do this job, and how to treat your teammates, from him.
I also want to thank my wife Katie. She’s challenged me and encouraged me to grow into a better person. Raising a family together has been a wild ride, and it’s only just getting started.
What is your “six-word memoir”? A six-word memoir describes something in just six words.
“Omit needless words. Assume positive intent.”
The first half was the rule hammered into us in journalism school. The second half is the mantra I learned from Michelle Jones, former head of Goddard communications, about treating others with kindness and compassion. Michelle — now the deputy associate administrator for communications at NASA — is another mentor I could never thank enough for helping me get where I am.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Share
Details
Last Updated Sep 16, 2024 EditorMadison OlsonContactJamie Adkinsjamie.l.adkins@nasa.govLocationGoddard Space Flight Center Related Terms
People of Goddard Goddard Space Flight Center People of NASA Explore More
6 min read Childhood Snow Days Transformed Linette Boisvert into a Sea Ice Scientist
Article 7 days ago 7 min read Kyle Helson Finds EXCITE-ment in Exoplanet Exploration
Article 7 days ago 5 min read Zachary Morse Hikes Hilltops, Caves Lava Tubes to Ready Moon Missions
Article 2 weeks ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.