Members Can Post Anonymously On This Site
A New Image From Our James Webb Space Telescope on This Week @NASA – August 5, 2022
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Piloted by NASA’s Tim Williams, the ER-2 science aircraft ascends for one of the final science flights for the GSFC Lidar Observation and Validation Experiment (GLOVE) on Feb. 1, 2025. As a collaboration between engineers, scientists, and aircraft professionals, GLOVE aims to improve satellite data products for Earth Science applications. NASA/Steve Freeman In February, NASA’s ER-2 science aircraft flew instruments designed to improve satellite data products and Earth science observations. From data collection to processing, satellite systems continue to advance, and NASA is exploring how instruments analyzing clouds can improve data measurement methods.
Researchers participating in the Goddard Space Flight Center Lidar Observation and Validation Experiment (GLOVE) used the ER-2 – based at NASA’s Armstrong Flight Research Center in Edwards, California – to validate satellite data about cloud and airborne particles in the Earth’s atmosphere. Scientists are using GLOVE instruments installed onboard the aircraft to measure and validate data about clouds generated by satellite sensors already orbiting in space around Earth.
“The GLOVE data will allow us to test new artificial intelligence algorithms in data processing,” said John Yorks, principal investigator for GLOVE and research physical scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “These algorithms aim to improve the cloud and aerosol detection in data produced by the satellites.”
Jennifer Moore, a researcher from NASA’s Goddard Space Flight Center, checks the cabling on the Roscoe instrument at NASA’s Armstrong Flight Research Center in Edwards, California, for the GSFC Lidar Observation and Validation Experiment (GLOVE) on Feb. 1, 2025. The Roscoe instrument will be uploaded onto NASA’s ER-2 science aircraft.NASA/Steve Freeman The validation provided by GLOVE is crucial because it ensures the accuracy and reliability of satellite data. “The instruments on the plane provide a higher resolution measurement ‘truth’ to ensure the data is a true representation of the atmospheric scene being sampled,” Yorks said.
The ER-2 flew over various parts of Oregon, Arizona, Utah, and Nevada, as well as over the Pacific Ocean off the coast of California. These regions reflected various types of atmospheres, including cirrus clouds, marine stratocumulus, rain and snow, and areas with multiple types of clouds.
“The goal is to improve satellite data products for Earth science applications,” Yorks said. “These measurements allow scientists and decision-makers to confidently use this satellite information for applications like weather forecasting and hazard monitoring.”
Researcher Jackson Begolka from the University of Iowa examines instrument connectors onboard the ER-2 aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, on Feb. 1, 2025. The GLOVE instrument will validate data from satellites orbiting the Earth.NASA/Steve Freeman The four instruments installed on the ER-2 were the Cloud Physics Lidar, the Roscoe Lidar, the enhanced Moderate Resolution Imaging Spectroradiometer Airborne Simulator, and the Cloud Radar System. These instruments validate data produced by sensors on NASA’s Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) and the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE), a joint venture between the ESA (European Space Agency) and JAXA (Japan Aerospace Exploration Agency).
“Additionally, the EarthCARE satellite is flying the first ever Doppler radar for measurements of air motions within clouds,” Yorks said. While the ER-2 is operated by pilots and aircrew from NASA Armstrong, these instruments are supported by scientists from NASA Goddard, NASA’s Ames Research Center in California’s Silicon Valley, and the Naval Research Laboratory office in Monterey, California, as well as by students from the University of Iowa in Iowa City and the University of Maryland College Park.
Share
Details
Last Updated Apr 16, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Airborne Science Earth Science Earth Science Technology Office Earth's Atmosphere ER-2 Goddard Space Flight Center Explore More
4 min read Hubble Provides New View of Galactic Favorite
As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new…
Article 9 hours ago 4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements
Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are…
Article 1 day ago 5 min read Can Solar Wind Make Water on Moon? NASA Experiment Shows Maybe
Scientists have hypothesized since the 1960s that the Sun is a source of ingredients that…
Article 1 day ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
Senior leaders speak on the distinct roles and responsibilities of the Space Force and USSPACECOM in a fireside chat at Colorado Springs, Colorado.
View the full article
-
By NASA
6 Min Read NASA’s Chandra Releases New 3D Models of Cosmic Objects
New three-dimensional (3D) models of objects in space have been released by NASA’s Chandra X-ray Observatory. These 3D models allow people to explore — and print — examples of stars in the early and end stages of their lives. They also provide scientists with new avenues to investigate scientific questions and find insights about the objects they represent.
These 3D models are based on state-of-the-art theoretical models, computational algorithms, and observations from space-based telescopes like Chandra that give us accurate pictures of these cosmic objects and how they evolve over time.
However, looking at images and animations is not the only way to experience this data. The four new 3D printable models of Cassiopeia A (Cas A), G292.0+1.8 (G292), Cygnus Loop supernova remnants, and the star known as BP Tau let us experience the celestial objects in the form of physical structures that will allow anyone to hold replicas of these stars and their surroundings and examine them from all angles.
Cassiopeia A (Cas A)
Using NASA’s James Webb Space Telescope, astronomers uncovered a mysterious feature within the remnant, nicknamed the “Green Monster,” alongside a puzzling network of ejecta filaments forming a web of oxygen-rich material. When combined with X-rays from Chandra, the data helped astronomers shed light on the origin of the Green Monster and revealed new insights into the explosion that created Cas A about 340 years ago, from Earth’s perspective.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
3D Model of Cassiopeia A "Green Monster" INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
3D Model of Cassiopeia AINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando BP Tau
X-ray: NASA/CXC/SAO; Optical: PanSTARRS; Image Processing: NASA/CXC/SAO/N. Wolk This 3D model shows a star less than 10 million years old that is surrounded by a disk of material. This class of objects is known as T Tauri stars, named after a young star in the Taurus star-forming region. The model describes the effects of multiple flares, or outbursts that are detected in X-rays by Chandra from one T Tauri star known as BP Tau. These flares interact with the disk of material and lead to the formation of an extended outer atmosphere composed by hot loops, connecting the disk to the developing star.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
3D Model of BP TauINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando Cygnus Loop
X-ray: NASA/SAO/CXC; Optical: John Stone (Astrobin); Image Processing: NASA/SAO/CXC/L. Frattre, N. Wolk The Cygnus Loop (also known as the Veil Nebula) is a supernova remnant, the remains of the explosive death of a massive star. This 3D model is the result of a simulation describing the interaction of a blast wave from the explosion with an isolated cloud of the interstellar medium (that is, dust and gas in between the stars). Chandra sees the blast wave and other material that has been heated to millions of degrees. The Cygnus Loop is a highly extended, but faint, structure on the sky: At three degrees across, it has the diameter of six full moons.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
3D Model of Cygnus LoopINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando G292.0+1.8
X-ray: NASA/CXC/SAO; Optical:NSF/NASA/DSS; Image Processing This is a rare type of supernova remnant observed to contain large amounts of oxygen. The X-ray image of G292.0+1.8 from Chandra shows a rapidly expanding, intricately structured field left behind by the shattered star. By creating a 3D model of the system, astronomers have been able to examine the asymmetrical shape of the remnant that can be explained by a “reverse” shock wave moving back toward the original explosion.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
3D Model of G292.0+1.8INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando The 3D models here are the subject of several scholarly papers by Salvatore Orlando of INAF in Palermo, Italy, and colleagues published in The Astrophysical Journal, Astronomy & Astrophysics, and Monthly Notices of the Royal Astronomical Society. Much of this work is also publicly available work on SketchFab.
NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory.
Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features visualizations of three supernova remnants and one star. Each is rendered as a composite image, and as a digital 3-dimensional model, presented in separate short video clips. The composite images are two dimensional and static, but the digital models rotate, showcasing their three-dimensionality.
The first featured supernova is Cassiopeia A. In the X-ray, optical, and infrared composite image, the debris from an exploded star resembles a round purple gas cloud, marbled with streaks of golden light. In the rotating, 3D model, the purple gas cloud is depicted as a flat disk, like a record or CD. Bursting out the front and back of the disk is an orange and white shape similar to a ball of coral, or a head of cauliflower lined with stubby tendrils. Most of the ball, and the majority of the tendrils, appear on one side of the disk. On the opposite side, the shape resembles dollops of thick whipped cream.
Next in the release is a star known as BP Tau. BP Tau is a developing star, less than 10 million years old, and prone to outbursts or flares. These flares interact with a disk of material that surrounds the young star, forming hot loops of extended atmosphere. In the composite image, BP Tau resembles a distant, glowing white dot surrounded by a band of pink light. The rotating, 3D model is far more dynamic and intriguing! Here, the disk of material resembles a large blue puck with round, ringed, concave surfaces. At the heart of the puck is a small, glowing red orb: the developing star. Shooting out of the orb are long, thin, green strands: the flares. Also emerging from the orb are orange and pink petal-shaped blobs: the loops of extended atmosphere. Together, the orb, strands, and petals resemble an exotic flowering orchid.
The third celestial object in this release is the supernova remnant called Cygnus Loop. In the composite image, the remnant resembles a wispy cloud in oranges, blues, purples, and whites, shaped like a backwards letter C. The 3D model examines this cloud of interstellar material interacting with the superheated, supernova blast wave. In the 3D model, the Cygnus Loop resembles a bowl with a thick base, and a wedge cut from the side like a slice of pie. The sides of the bowl are rendered in swirled blues and greens. However, inside the thick base, revealed by the wedge-shaped cut, are streaks of red and orange. Surrounding the shape are roughly parallel thin red strands, which extend beyond the top and bottom of the digital model.
The final supernova featured in this release is G292.0+1.8. The composite image depicts the remnant as a bright and intricate ball of red, blue, and white X-ray gas and debris set against a backdrop of gleaming stars. In the 3D model, the remnant is rendered in translucent icy blue and shades of orange. Here, the rotating shape is revealed to be somewhat like a bulbous arrowhead, or perhaps an iceberg on its side.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
About the Author
Lee Mohon
Share
Details
Last Updated Apr 16, 2025 Related Terms
Chandra X-Ray Observatory Astrophysics General Marshall Astrophysics Marshall Space Flight Center Supernova Remnants The Universe Explore More
4 min read Hubble Provides New View of Galactic Favorite
As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new…
Article 5 hours ago 3 min read NASA Sees Progress on Blue Origin’s Orbital Reef Design Development
Article 6 hours ago 1 min read Why Do We Grow Plants in Space?
Article 1 day ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Each year, cutting-edge technologies developed by the European Space Agency (ESA) for its complex missions and scientific discoveries find new life in applications used to benefit Earth and improve our daily lives.
From 9–13 April, ESA was guest of honour at the 50th International Exhibition of Inventions Geneva in Switzerland with more than 1000 inventions, which attracted 30 000 visitors from the public. ESA showcased its new technologies and applications that have been invented for space missions and patented for use in and outside the space arena.
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 4 Min Read Hubble Provides New View of Galactic Favorite
NASA/ESA Hubble Space Telescope image of the Sombrero Galaxy, also called Messier 104. Credits:
ESA/Hubble & NASA, K. Noll As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new image series revisiting stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.
ESA/Hubble published a new image of NGC 346 as the first installment in the series. Now, they are revisiting a fan-favorite galaxy with new image processing techniques. The new image reveals finer detail in the galaxy’s disk, as well as more background stars and galaxies.
Over the past two decades, Hubble has released several images of the Sombrero Galaxy, including this well-known Hubble image from October 2003. In November 2024, the NASA/ESA/CSA James Webb Space Telescope also provided an entirely new perspective on this striking galaxy.
Located around 30 million light-years away in the constellation Virgo, the Sombrero Galaxy is instantly recognizable. Viewed nearly edge on, the galaxy’s softly luminous bulge and sharply outlined disk resemble the rounded crown and broad brim of the Mexican hat from which the galaxy gets its name.
NASA/ESA Hubble Space Telescope image of the Sombrero Galaxy, also called Messier 104. ESA/Hubble & NASA, K. Noll Though packed with stars, the Sombrero Galaxy is surprisingly not a hotbed of star formation. Less than one solar mass of gas is converted into stars within the knotted, dusty disk of the galaxy each year. Even the galaxy’s central supermassive black hole, which at nine billion solar masses is more than 2,000 times more massive than the Milky Way’s central black hole, is fairly calm.
The galaxy is too faint to spot with the unaided eye, but it is readily viewable with a modest amateur telescope. Seen from Earth, the galaxy spans a distance equivalent to roughly one-third the diameter of the full Moon. The galaxy’s size on the sky is too large to fit within Hubble’s narrow field of view, so this image is actually a mosaic of several images stitched together.
One of the things that makes this galaxy especially notable is its viewing angle, which is inclined just six degrees off of the galaxy’s equator. From this vantage point, intricate clumps and strands of dust stand out against the brilliant white galactic nucleus and bulge, creating an effect not unlike Saturn and its rings — but on an epic galactic scale.
At the same time, this extreme angle makes it difficult to discern the structure of the Sombrero Galaxy. It’s not clear whether it’s a spiral galaxy, like our own Milky Way, or an elliptical galaxy. Curiously, the galaxy’s disk seems like a fairly typical disk for a spiral galaxy, and its spheroidal bulge and halo seem fairly typical for an elliptical galaxy — but the combination of the two components resembles neither a spiral nor an elliptical galaxy.
Researchers used Hubble to investigate the Sombrero Galaxy, measuring the metals (what astronomers call elements heavier than helium) in stars in the galaxy’s expansive halo. This type of measurement can help astronomers better understand a galaxy’s history, potentially revealing whether it merged with other galaxies in the past. In the case of the Sombrero Galaxy, extremely metal-rich stars in the halo point to a possible merger with a massive galaxy several billion years ago. An ancient galactic clash, hinted at by Hubble’s sensitive measurements, could explain the Sombrero Galaxy’s distinctive appearance.
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore Hubble Sombrero Galaxy Images and Science
Sombrero Galaxy
Learn more about and download the image above.
Hubble’s Messier Catalog: M104 (Sombrero Galaxy)
Hubble easily resolves some of the Sombrero Galaxy’s roughly 2,000 globular clusters.
Beyond the Brim, Sombrero Galaxy’s Halo Suggests Turbulent Past
Surprising new data from NASA’s Hubble Space Telescope suggests the smooth, settled “brim” of the Sombrero galaxy’s disk may be concealing a turbulent past.
Heritage Project Celebrates Five Years of Harvesting the Best Images from Hubble Space Telescope
The Hubble Heritage Project released more than 65 images of dazzling celestial objects, including planets, dying stars, regions of star formation, clusters of stars, individual galaxies, and even clusters of galaxies.
Share
Details
Last Updated Apr 16, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
claire.andreoli@nasa.gov
Bethany Downer
ESA/Hubble
bethany.downer@esahubble.org
Garching, Germany
Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center The Universe
Related Links and Documents
Hubble’s 35th Anniversary celebrations ESA/Hubble’s 35th Anniversary celebrations Release on ESA’s website
Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Galaxy Details and Mergers
Hubble’s Galaxies
Hubble’s 35th Anniversary
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.