Members Can Post Anonymously On This Site
Readying spacecraft to surf Venus’ atmosphere
-
Similar Topics
-
By NASA
NASA’s Lucy spacecraft is 6 days and less than 50 million miles (80 million km) away from its second close encounter with an asteroid; this time, the small main belt asteroid Donaldjohanson.
Download high-resolution video and images from NASA’s Scientific Visualization Studio.
NASA/Dan Gallagher This upcoming event represents a comprehensive “dress rehearsal” for Lucy’s main mission over the next decade: the exploration of multiple Trojan asteroids that share Jupiter’s orbit around the Sun. Lucy’s first asteroid encounter – a flyby of the tiny main belt asteroid Dinkinesh and its satellite, Selam, on Nov. 1, 2023 – provided the team with an opportunity for a systems test that they will be building on during the upcoming flyby.
Lucy’s closest approach to Donaldjohanson will occur at 1:51pm EDT on April 20, at a distance of 596 miles (960 km). About 30 minutes before closest approach, Lucy will orient itself to track the asteroid, during which its high-gain antenna will turn away from Earth, suspending communication. Guided by its terminal tracking system, Lucy will autonomously rotate to keep Donaldjohanson in view. As it does this, Lucy will carry out a more complicated observing sequence than was used at Dinkinesh. All three science instruments – the high-resolution greyscale imager called L’LORRI, the color imager and infrared spectrometer called L’Ralph, and the far infrared spectrometer called L’TES – will carry out observation sequences very similar to the ones that will occur at the Trojan asteroids.
However, unlike with Dinkinesh, Lucy will stop tracking Donaldjohanson 40 seconds before the closest approach to protect its sensitive instruments from intense sunlight.
“If you were sitting on the asteroid watching the Lucy spacecraft approaching, you would have to shield your eyes staring at the Sun while waiting for Lucy to emerge from the glare. After Lucy passes the asteroid, the positions will be reversed, so we have to shield the instruments in the same way,” said encounter phase lead Michael Vincent of Southwest Research Institute (SwRI) in Boulder, Colorado. “These instruments are designed to photograph objects illuminated by sunlight 25 times dimmer than at Earth, so looking toward the Sun could damage our cameras.”
Fortunately, this is the only one of Lucy’s seven asteroid encounters with this challenging geometry. During the Trojan encounters, as with Dinkinesh, the spacecraft will be able to collect data throughout the entire encounter.
After closest approach, the spacecraft will “pitch back,” reorienting its solar arrays back toward the Sun. Approximately an hour later, the spacecraft will re-establish communication with Earth.
“One of the weird things to wrap your brain around with these deep space missions is how slow the speed of light is,” continued Vincent. “Lucy is 12.5 light minutes away from Earth, meaning it takes that long for any signal we send to reach the spacecraft. Then it takes another 12.5 minutes before we get Lucy’s response telling us we were heard. So, when we command the data playback after closest approach, it takes 25 minutes from when we ask to see the pictures before we get any of them to the ground.”
Once the spacecraft’s health is confirmed, engineers will command Lucy to transmit the science data from the encounter back to Earth, which is a process that will take several days.
Donaldjohanson is a fragment from a collision 150 million years ago, making it one of the youngest main belt asteroids ever visited by a spacecraft.
“Every asteroid has a different story to tell, and these stories weave together to paint the history of our solar system,” said Tom Statler, Lucy mission program scientist at NASA Headquarters in Washington. “The fact that each new asteroid we visit knocks our socks off means we’re only beginning to understand the depth and richness of that history. Telescopic observations are hinting that Donaldjohanson is going to have an interesting story, and I’m fully expecting to be surprised – again.”
NASA’s Goddard Space Flight Center in Greenbelt, Maryland, designed and built the L’Ralph instrument and provides overall mission management, systems engineering and safety and mission assurance for Lucy. Hal Levison of SwRI’s office in Boulder, Colorado, is the principal investigator. SwRI, headquartered in San Antonio, also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft, designed the original orbital trajectory and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the Lucy spacecraft. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, designed and built the L’LORRI (Lucy Long Range Reconnaissance Imager) instrument. Arizona State University in Tempe, Arizona, designed and build the L’TES (Lucy Thermal Emission Spectrometer) instrument. Lucy is the thirteenth mission in NASA’s Discovery Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama.
By Katherine Kretke, Southwest Research Institute
Media Contact:
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Apr 14, 2025 EditorMadison OlsonContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
Lucy Goddard Space Flight Center Planetary Science Explore More
4 min read New Modeling Assesses Age of Next Target Asteroid for NASA’s Lucy
Article 4 weeks ago 3 min read NASA’s Lucy Spacecraft Takes Its 1st Images of Asteroid Donaldjohanson
Article 2 months ago 3 min read NASA’s Lucy Asteroid Target Gets a Name
Article 2 years ago View the full article
-
By European Space Agency
The European Space Agency (ESA) has powered down its Gaia spacecraft after more than a decade spent gathering data that are now being used to unravel the secrets of our home galaxy.
On 27 March 2025, Gaia’s control team at ESA’s European Space Operations Centre carefully switched off the spacecraft’s subsystems and sent it into a ‘retirement orbit’ around the Sun.
Though the spacecraft’s operations are now over, the scientific exploitation of Gaia’s data has just begun.
View the full article
-
By NASA
Explore This Section Science Science Activation 2025 Aviation Weather Mission:… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 2 min read
2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds
The Science Activation Program’s NASA Earth Science Education Collaborative (NESEC) is working alongside the Civil Air Patrol (CAP) to launch the 2025 Aviation Weather Mission. The mission will engage cadets (students ages 11-20) and senior members to collect aviation-relevant observations including airport conditions, Global Learning and Observations to Benefit the Environment (GLOBE) Cloud observations, commercial aircraft information (including registration number and altitude), and satellite collocations provided by the NASA GLOBE Clouds team at NASA Langley Research Center. This mission results from a highly successful collaboration between NESEC and CAP as cadets and senior members collected cloud, air temperature, and land cover observations during the partial and total solar eclipses in 2023 and 2024, engaging over 400 teams with over 3,000 cadets and over 1,000 senior members in every state, Washington DC, and Puerto Rico.
The 2025 Aviation Weather Mission will take place from April through July 2025, collecting observations over two 4-hour periods while practicing additional skills, such as flight tracking, orienteering, and data management. So far, over 3,000 cadets in 46 wings (states) have signed up to participate.
Science Activation recently showed support for this mission through a letter of collaboration sent to CAP Major General Regena Aye in early February. NASA GLOBE Clouds and GLOBE Observer are part of the NASA Earth Science Education Collaborative (NESEC), which is led by the Institute for Global Environmental Strategies (IGES) and supported by NASA under cooperative agreement award number NNX16AE28A. NESEC is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
Cadets from the Virginia wing making cloud observations as they prepare for the 2025 Aviation Weather Mission. Share
Details
Last Updated Mar 04, 2025 Editor NASA Climate Editorial Team Location NASA Langley Research Center Related Terms
Science Activation Clouds Opportunities For Students to Get Involved Weather and Atmospheric Dynamics Explore More
2 min read Sharing PLANETS Curriculum with Out-of-School Time Educators
Article
1 week ago
3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
Article
2 weeks ago
2 min read An Afternoon of Family Science and Rocket Exploration in Alaska
Article
3 weeks ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Exposes Complex Atmosphere of Starless Super-Jupiter
This artist’s concept shows what the isolated planetary-mass object SIMP 0136 could look like based on recent observations from NASA’s James Webb Space Telescope and previous observations from Hubble, Spitzer, and numerous ground-based telescopes. Credits:
NASA, ESA, CSA, and Joseph Olmsted (STScI) An international team of researchers has discovered that previously observed variations in brightness of a free-floating planetary-mass object known as SIMP 0136 must be the result of a complex combination of atmospheric factors, and cannot be explained by clouds alone.
Using NASA’s James Webb Space Telescope to monitor a broad spectrum of infrared light emitted over two full rotation periods by SIMP 0136, the team was able to detect variations in cloud layers, temperature, and carbon chemistry that were previously hidden from view.
The results provide crucial insight into the three-dimensional complexity of gas giant atmospheres within and beyond our solar system. Detailed characterization of objects like these is essential preparation for direct imaging of exoplanets, planets outside our solar system, with NASA’s Nancy Grace Roman Space Telescope, which is scheduled to begin operations in 2027.
Rapidly Rotating, Free-Floating
SIMP 0136 is a rapidly rotating, free-floating object roughly 13 times the mass of Jupiter, located in the Milky Way just 20 light-years from Earth. Although it is not classified as a gas giant exoplanet — it doesn’t orbit a star and may instead be a brown dwarf — SIMP 0136 is an ideal target for exo-meteorology: It is the brightest object of its kind in the northern sky. Because it is isolated, it can be observed with no fear of light contamination or variability caused by a host star. And its short rotation period of just 2.4 hours makes it possible to survey very efficiently.
Prior to the Webb observations, SIMP 0136 had been studied extensively using ground-based observatories and NASA’s Hubble and Spitzer space telescopes.
“We already knew that it varies in brightness, and we were confident that there are patchy cloud layers that rotate in and out of view and evolve over time,” explained Allison McCarthy, doctoral student at Boston University and lead author on a study published today in The Astrophysical Journal Letters. “We also thought there could be temperature variations, chemical reactions, and possibly some effects of auroral activity affecting the brightness, but we weren’t sure.”
To figure it out, the team needed Webb’s ability to measure very precise changes in brightness over a broad range of wavelengths.
Graphic A: Isolated Planetary-Mass Object SIMP 0136 (Artist’s Concept)
This artist’s concept shows what the isolated planetary-mass object SIMP 0136 could look like based on recent observations from NASA’s James Webb Space Telescope and previous observations from Hubble, Spitzer, and numerous ground-based telescopes. Researchers used Webb’s NIRSpec (Near-Infrared Spectrograph) and MIRI (Mid-Infrared Instrument) to measure subtle changes in the brightness of infrared light as the object completed two 2.4-hour rotations. By analyzing the change in brightness of different wavelengths over time, they were able to detect variability in cloud cover at different depths, temperature variations in the upper atmosphere, and changes in carbon chemistry as different sides of the object rotated in and out of view. This illustration is based on Webb’s spectroscopic observations. Webb has not captured a direct image of the object. NASA, ESA, CSA, and Joseph Olmsted (STScI) Charting Thousands of Infrared Rainbows
Using NIRSpec (Near-Infrared Spectrograph), Webb captured thousands of individual 0.6- to 5.3-micron spectra — one every 1.8 seconds over more than three hours as the object completed one full rotation. This was immediately followed by an observation with MIRI (Mid-Infrared Instrument), which collected hundreds of spectroscopic measurements of 5- to 14-micron light — one every 19.2 seconds, over another rotation.
The result was hundreds of detailed light curves, each showing the change in brightness of a very precise wavelength (color) as different sides of the object rotated into view.
“To see the full spectrum of this object change over the course of minutes was incredible,” said principal investigator Johanna Vos, from Trinity College Dublin. “Until now, we only had a little slice of the near-infrared spectrum from Hubble, and a few brightness measurements from Spitzer.”
The team noticed almost immediately that there were several distinct light-curve shapes. At any given time, some wavelengths were growing brighter, while others were becoming dimmer or not changing much at all. A number of different factors must be affecting the brightness variations.
“Imagine watching Earth from far away. If you were to look at each color separately, you would see different patterns that tell you something about its surface and atmosphere, even if you couldn’t make out the individual features,” explained co-author Philip Muirhead, also from Boston University. “Blue would increase as oceans rotate into view. Changes in brown and green would tell you something about soil and vegetation.”
Graphic B: Isolated Planetary-Mass Object SIMP 0136 (NIRSpec Light Curves)
These light curves show the change in brightness of three different sets of wavelengths (colors) of near-infrared light coming from the isolated planetary-mass object SIMP 0136 as it rotated. The light was captured by Webb’s NIRSpec (Near-Infrared Spectrograph), which collected a total of 5,726 spectra — one every 1.8 seconds — over the course of about 3 hours on July 23, 2023. The variations in brightness are thought to be related to different atmospheric features — deep clouds composed of iron particles, higher clouds made of tiny grains of silicate minerals, and high-altitude hot and cold spots — rotating in and out of view. The diagram at the right illustrates the possible structure of SIMP 0136’s atmosphere, with the colored arrows representing the same wavelengths of light shown in the light curves. Thick arrows represent more (brighter) light; thin arrows represent less (dimmer) light. NASA, ESA, CSA, and Joseph Olmsted (STScI) Patchy Clouds, Hot Spots, and Carbon Chemistry
To figure out what could be causing the variability on SIMP 0136, the team used atmospheric models to show where in the atmosphere each wavelength of light was originating.
“Different wavelengths provide information about different depths in the atmosphere,” explained McCarthy. “We started to realize that the wavelengths that had the most similar light-curve shapes also probed the same depths, which reinforced this idea that they must be caused by the same mechanism.”
One group of wavelengths, for example, originates deep in the atmosphere where there could be patchy clouds made of iron particles. A second group comes from higher clouds thought to be made of tiny grains of silicate minerals. The variations in both of these light curves are related to patchiness of the cloud layers.
A third group of wavelengths originates at very high altitude, far above the clouds, and seems to track temperature. Bright “hot spots” could be related to auroras that were previously detected at radio wavelengths, or to upwelling of hot gas from deeper in the atmosphere.
Some of the light curves cannot be explained by either clouds or temperature, but instead show variations related to atmospheric carbon chemistry. There could be pockets of carbon monoxide and carbon dioxide rotating in and out of view, or chemical reactions causing the atmosphere to change over time.
“We haven’t really figured out the chemistry part of the puzzle yet,” said Vos. “But these results are really exciting because they are showing us that the abundances of molecules like methane and carbon dioxide could change from place to place and over time. If we are looking at an exoplanet and can get only one measurement, we need to consider that it might not be representative of the entire planet.”
This research was conducted as part of Webb’s General Observer Program 3548.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
View/Download the research results from The Astrophysical Journal Letters.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Margaret W. Carruthers – mcarruthers@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Hannah Braun – hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Learn more about brown dwarf discoveries
Article: Spectroscopy 101
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Universe
Universe Stories
Exoplanets
View the full article
-
By NASA
NASA/Brandon Torres Navarrete Engineers at NASA’s Ames Research Center in California’s Silicon Valley, Bohdan Wesely, right, and Eli Hiss, left, complete a fit check of the two halves of a space capsule that will study the clouds of Venus for signs of life.
Led by Rocket Lab of Long Beach, California, and their partners at the Massachusetts Institute of Technology in Cambridge, Rocket Lab’s Venus mission will be the first private mission to the planet.
NASA’s role is to help the commercial space endeavor succeed by providing expertise in thermal protection of small spacecraft. Invented at Ames, NASA’s Heatshield for Extreme Entry Environment Technology (HEEET) – the brown, textured material covering the bottom of the capsule in this photo – is a woven heat shield designed to protect spacecraft from temperatures up to 4,500 degrees Fahrenheit. The probe will deploy from Rocket Lab’s Photon spacecraft bus, taking measurements as it descends through the planet’s atmosphere.
Teams at Ames work with private companies, like Rocket Lab, to turn NASA materials into solutions such as the heat shield tailor-made for this spacecraft destined for Venus, supporting growth of the new space economy. NASA’s Small Spacecraft Technology program, part of the agency’s Space Technology Mission Directorate, supported development of the heat shield for Rocket Lab’s Venus mission.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.