Jump to content

Recommended Posts

Posted
Although NASA is commissioning a study team to start early in the fall to examine unidentified aerial phenomena (UAPs) – that is, observations of events in the sky that cannot be identified as aircraft or known natural phenomena as well as NASA wants to transform satellites into alien seekers to probe unexplained sightings in space, it might be better that NASA check their archive first as overwhelming evidence is present on footage from, among others, the Space Shuttle and Apollo Missions showing UFOs in space and above the Lunar surface. 

Proof of the existence of UFOs what they have withheld from the public all the years. 

UFOs%20in%20space%20(1).jpg


UFOs%20in%20space%20(2).jpg

During the Space Shuttle flights many recordings were made by the astronauts. Some of these recordings show objects in space that clearly cannot be meteorites, space junk, or lightning storms. 

UFOs%20in%20space%20(3).jpg

These objects change direction, slow down, make 90 and 180 degree turns before speeding up and disappearing into space. Only UFOs or unknown probes under intelligent control can perform this kind of maneuvers.

   

Also during the Apollo flights, recordings were made by the astronauts in which UFOs can be seen.

UFOs%20in%20space%20(4).jpg

One such example is the footage recorded by the Apollo 11 crew showing a UFO flying just above the moon's surface.

   

And what about the astronaut who saw a UFO during the Apollo 17 Mission. 

Normally NASA astronauts follow a "script" and they know exactly what and when to say. 

UFOs%20in%20space%20(1).png
But during the Apollo 17 mission this astronaut however was too shocked by something he had never seen before. He forgets his "lines" and no longer follows the script. Instead a long and not planned discussion and conversation starts. The astronaut is truly amazed. Unlike his colleague, who seems to be in charge. The astronaut asks what these objects were that flew over his head. Than it becomes hilarious. Flabbergasted, the second astronaut does also not know what to say! This was not planned and not in the script. He is however aware of the fact that they are being watched by NASA officials. 

After a short period of silence he says that it was a blast coming from the dial shaped disc of the high gain antenna on the rover (vehicle). More objects start flying over and again we hear genuine excitement. Than the astronaut realizes that he had said something he should not have said in front of the cameras and NASA. He reluctantly accepts the vague explanation. He is really annoyed and you hear sarcasm and disbelief in the undertone of his voice. 

NASA tries to save this unpleasant situation and intervenes as CAPCOM confirms that it was a blast from the antenna and that it happened before. 

According to the astronaut who clearly is in charge, this blast from the antenna is just "routine". 

This is an interesting video. Styrofoam blowing up? This has happened before? When this really would be the case, would they not have taken countermeasures? Space programs are planned with utmost precision and they do not take any risks with equipment and astronauts. So what do you think after having seen the footage? Was it a blast from the antenna? Exploding Styrofoam? 

Or is someone not telling us the truth and these two astronauts had a couple "visitors" passing by.

 



View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      If you ask Johnson Space Center employees why they work for NASA, many will tell you it was always their dream. For others, landing a job at NASA was an unexpected stop on their career path. Here is a look at where five Johnson team members worked before NASA and how they are helping to advance the agency’s mission today.

      Michelle Wood
      How it started: Michelle Wood working as an American Sign Language interpreter (left). How it’s going: Wood as a flight controller in Johnson Space Center’s Mission Control Center in Houston. Images courtesy of Wood Wood worked as an American Sign Language interpreter before joining NASA about seven years ago. Today, she is an Operational Support Officer flight controller and instructor in the Mission Control Center.

      ***

      Warnecke Miller
      How it started: Miller is shown completing firearms training as a Federal Bureau of Investigation intern in the summer of 1998 (left). How it’s going: Miller emceeing a retirement celebration for a Johnson colleague in April 2024. Images courtesy of Miller Miller has been an attorney in Johnson’s Office of the General Counsel for 12 years. Before that, she served as an administrative law judge for Social Security and adjudicated disability cases.

      ***

      Celeste Budwit-Hunter
      How it started: Celeste Budwit-Hunter is pictured as a school counselor (left). How it’s going: Budwit-Hunter with NASA astronauts Mike Finke, Suni Williams, and Butch Wilmore and her Procedures Group editorial team members in Johnson’s Space Vehicle Mockup Facility. Images courtesy of Budwit-Hunter Budwit-Hunter was a technical writer in the oil and gas industry before earning a master’s degree in family therapy. She went on to work for The Council on Alcohol and Drugs (now The Council on Recovery) and then as a private school counselor for students with learning disabilities. She returned to technical writing while starting a private family therapy practice. After several years of treatment and recovery following a cancer diagnosis, Budwit-Hunter applied to become an editor in the Flight Operations Director’s Procedures Group. She is now the group’s lead editor and is training to become a book manager.

      ***

      Don Walker
      How it started: A photo of a young Don Walker standing in front of an Apollo lunar module mockup on the Johnson campus in the early 1970s (left). How it’s going: Walker’s official NASA portrait. Walker worked as a freelancer in television production before joining the Johnson team 38 years ago. Today, Walker is an engineering technician in the Office of the Chief Information Officer, working master control for the center’s television operations.

      ***

      Donna Coyle
      How it started: Donna Coyle as a college student in Rome (left). How it’s going: Coyle outside Space Center Houston prior to the Expedition 68 crew debrief and awards ceremony in 2023. Images courtesy of Coyle Coyle earned a bachelor’s degree in international relations before switching gears to work as an expeditor in the oil and gas industry. That role involved working with cross-functional teams to ensure the smooth and timely delivery of equipment and materials to worksites. After visiting locations and seeing how equipment, piping, and steel were made, she was inspired to go back to school to become an engineer. Coyle’s grandfather worked at NASA during the Apollo missions, and she decided to follow in his footsteps. She joined the Johnson team in 2021 as a crew time engineer, analyzing astronaut time as a resource to help with decision-making before and during expeditions to the International Space Station.

      Do you want to join the NASA team? Visit our Careers site to explore open opportunities and find your place with us!
      View the full article
    • By NASA
      NASA Deputy Administrator Pam Melroy gives keynote remarks during the 37th Space Symposium, Tuesday, April 5, 2022, in Colorado Springs, Colorado. Photo Credit: (NASA/Bill Ingalls) The Rotary National Award for Space Achievement Foundation has selected NASA Deputy Administrator Pam Melroy, a retired United States Air Force colonel and former NASA astronaut, to receive the 2025 National Space Trophy on April 25 in Houston.
      “This honor is not just a reflection of my journey but a testament to the incredible teams and visionaries I’ve been privileged to work alongside,” said Melroy. “Exploring space is the ultimate act of human aspiration, proving time and again that when we dream together, we achieve the impossible. Being selected for the National Space Trophy is a humbling reminder of how far we’ve come — and how much further we can go.”
      Vanessa Wyche, director of NASA’s Johnson Space Center in Houston, who nominated Melroy alongside former NASA Johnson director Michael Coats, said, “Pam has brilliantly paved the way for future generations pursuing careers in STEM fields through her exemplary leadership, dedication to mission excellence, and integral contributions to the advancement of space exploration. I am thrilled and immensely proud that Pam is receiving this well-deserved recognition.”
      Sworn in as NASA’s deputy administrator on June 21, 2021, Melroy assists NASA Administrator Bill Nelson on key agency decisions, defines the agency’s strategic vision, and represents NASA to key government and international partners.
      Melroy first joined NASA as an astronaut in 1994 and holds the distinction of being only one of two women to command a space shuttle. She spent more than 38 days in space across three space shuttle missions, all contributing to the assembly of the International Space Station. She served as pilot for STS-92 in 2000 and STS-112 in 2002, and she commanded STS-120 in 2007.
      After serving more than two decades in the U.S. Air Force and as a NASA astronaut, Melroy transitioned to leadership roles at Lockheed Martin, the Federal Aviation Administration, the Defense Advanced Research Projects Agency, and Nova Systems Pty, Australia. Additionally, she was as an advisor to the Australian Space Agency and a member of the National Space Council’s Users Advisory Group.
      The Rotary National Award for Space Achievement Foundation invites members of the public and the aerospace community to attend the Space Awards gala where Melroy will be recognized with the National Space Trophy. For more information on Melroy, visit:
      https://www.nasa.gov/people/nasa-deputy-administrator-pam-melroy/
      -end-
      Amber Jacobson
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov
      Share
      Details
      Last Updated Jan 14, 2025 LocationNASA Headquarters Related Terms
      Pamela A. Melroy Astronauts View the full article
    • By NASA
      NASA’s SPHEREx observatory will use a technique called spectroscopy across the entire sky, capturing the universe in more than 100 colors.Credit: BAE Systems Media accreditation is open for the launch of two NASA missions that will explore the mysteries of our universe and Sun.
      The agency is targeting late February to launch its SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) observatory, a space telescope that will create a 3D map of the entire sky to help scientists investigate the origins of our universe. NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which will study origins of the Sun’s outflow of material, or the solar wind, also will ride to space with the telescope.
      NASA and SpaceX will launch the missions aboard the company’s Falcon 9 rocket from Space Launch Complex 4E at Vandenberg Space Force Base in California.

      Accredited media will have the opportunity to participate in a series of prelaunch briefings and interviews with key mission personnel, including a science briefing the week of launch. NASA will communicate additional details regarding the media event schedule as the launch date approaches.
      Media interested in covering the launch must apply for media accreditation. The application deadline for U.S. citizens is 11:59 p.m. EST, Thursday, Feb. 6, while international media without U.S. citizenship must apply by 11:59 p.m., Monday, Jan. 20.

      NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other mission questions, please contact the newsroom at NASA’s Kennedy Space Center in Florida at 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      Updates about spacecraft launch preparations are available on the agency’s SPHEREx blog and PUNCH blog.

      The SPHEREx mission will observe hundreds of millions of stars and galaxies in infrared light, a range of wavelengths not visible to the human eye. With this map, SPHEREx will enable scientists to study inflation, or the rapid expansion of the universe a fraction of a second after the big bang. The observatory also will measure the collective glow from galaxies near and far, including light from hidden galaxies that individually haven’t been observed, and look for reservoirs of water, carbon dioxide, and other key ingredients for life in our home galaxy.
      Launching as a rideshare with SPHEREx, the agency’s PUNCH mission is made up of four suitcase-sized satellites that will spread out around Earth’s day-night line to observe the Sun and space with a combined field of view. Working together, the four satellites will map out the region where the Sun’s outer atmosphere, the corona, transitions to the solar wind, or the constant outflow of material from the Sun.

      The SPHEREx observatory is managed by NASA’s Jet Propulsion Laboratory in Southern California for the Astrophysics Division within the agency’s Science Mission Directorate in Washington. The mission principal investigator is based jointly at NASA JPL and Caltech. Formerly Ball Aerospace, BAE Systems built the telescope, supplied the spacecraft bus, and performed observatory integration. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech. The SPHEREx data set will be publicly available.

      The agency’s PUNCH mission is led by Southwest Research Institute’s office in Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate. NASA’s Launch Services Program, based at NASA Kennedy, manages the launch service for the SPHEREx and PUNCH missions.
      For more details about the SPHEREx mission and updates on launch preparations, visit:
      https://science.nasa.gov/mission/spherex
      -end-
      Alise Fisher (SPHEREx)
      Headquarters, Washington
      202-617-4977
      alise.m.fisher@nasa.gov
      Sarah Frazier (PUNCH)
      Goddard Space Flight Center, Maryland
      202-853-7191
      sarah.frazier@nasa.gov
      Laura Aguiar
      Kennedy Space Center, Florida
      321-593-6245
      laura.aguiar@nasa.gov
      Share
      Details
      Last Updated Jan 13, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Goddard Space Flight Center Heliophysics Jet Propulsion Laboratory Kennedy Space Center Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate View the full article
    • By NASA
      Following the historic year of 1969 that saw two successful Moon landings, 1970 opened on a more sober note. Ever-tightening federal budgets forced NASA to rescope its future lunar landing plans. The need for a Saturn V to launch an experimental space station in 1972 forced the cancellation of the final Moon landing mission and an overall stretching out of the Moon landing flights. Apollo 13 slipped to April, but the crew of James Lovell, Thomas “Ken” Mattingly, and Fred W. Haise and their backups John Young, John “Jack” Swigert, and Charles Duke continued intensive training for the landing at Fra Mauro. Training included practicing their surface excursions and water egress, along with time in spacecraft simulators. The three stages of the Apollo 14 Saturn V arrived at the launch site and workers began the stacking process for that mission now planned for October 1970. Scientists met in Houston to review the preliminary findings from their studies of the lunar samples returned by Apollo 11. 
      Apollo Program Changes 
      Apollo Moon landing plans in early 1970, with blue indicating completed landings, green planned landings at the time, and red canceled landings. Illustration of the Apollo Applications Program, later renamed Skylab, experimental space station then planned for 1972. On Jan. 4, 1970, NASA Deputy Administrator George Low announced the cancellation of Apollo 20, the final planned Apollo Moon landing mission. The agency needed the Saturn V rocket that would have launched Apollo 20 to launch the Apollo Applications Program (AAP) experimental space station, renamed Skylab in February 1970. Since previous NASA Administrator James Webb had precluded the building of any additional Saturn V rockets in 1968, this proved the only viable yet difficult solution.  
      In other program changes, on Jan. 13 NASA Administrator Thomas Paine addressed how NASA planned to deal with ongoing budgetary challenges. Lunar landing missions would now occur every six months instead of every four, and with the slip of Apollo 13 to April, Apollo 14 would now fly in October instead of July. Apollo 15 and 16 would fly in 1971, then AAP would launch in 1972, and three successive crews would spend, 28, 56, and 56 days aboard the station. Lunar landing missions would resume in 1973, with Apollo 17, 18, and 19 closing out the program by the following year. 
      Top NASA managers in the Mission Control Center, including Sigurd “Sig” Sjoberg, third from left, Christopher Kraft, sitting in white shirt, and Dale Myers, third from right. Wernher von Braun in his office at NASA Headquarters in Washington, D.C. In addition to programmatic changes, several key management changes took place at NASA in January 1970. On Nov. 26, 1969, Christopher Kraft , the director of flight operations at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, assumed the position of MSC deputy director. On Dec. 28, MSC Director Robert Gilruth named Sigurd “Sig” Sjoberg, deputy director of flight operations since 1963, to succeed Kraft. At NASA Headquarters in Washington, D.C., Associate Administrator for Manned Space Flight George Mueller resigned his position effective Dec. 10, 1969. To replace Mueller, on Jan. 8, NASA Administrator Paine named Dale Myers, vice president and general manager of the space shuttle program at North American Rockwell Corporation. On Jan. 27, Paine announced that Wernher von Braun, designer of the Saturn family of rockets and director of the Marshall Space Flight Center in Huntsville, Alabama, since its establishment in 1960, would move to NASA Headquarters and assume the position of deputy associate administrator for planning. 
      Apollo 11 Lunar Science Symposium 
      Sign welcoming scientists to the Apollo 11 Lunar Science Conference. Apollo 11 astronaut Edwin “Buzz” Aldrin addresses a reception at the First Lunar Science Conference. Between Jan. 5 and 8, 1970, several hundred scientists, including all 142 U.S. and international principal investigators provided with Apollo 11 samples, gathered in downtown Houston’s Albert Thomas Exhibit and Convention Center for the Apollo 11 Lunar Science Conference. During the conference, the scientists discussed the chemistry, mineralogy, and petrology of the lunar samples, the search for carbon compounds and any evidence of organic material, the results of dating of the samples, and the results returned by the Early Apollo Surface Experiments Package (EASEP). Senior NASA managers including Administrator Paine, Deputy Administrator Low, and Apollo Program Director Rocco Petrone attended the conference, and Apollo 11 astronaut Edwin “Buzz” Aldrin gave a keynote speech at a dinner reception. The prestigious journal Science dedicated its Jan. 30, 1970, edition to the papers presented at the conference, dubbing it “The Moon Issue”. The Lunar Science Conference evolved into an annual event, renamed the Lunar and Planetary Science Conference in 1978, and continues to attract scientists from around the world to discuss the latest developments in lunar and planetary exploration. 
      Apollo 12 
      Apollo 12 astronaut Richard Gordon riding in one of the Grand Marshal cars in the Rose Parade in Pasadena, California. Actress June Lockhart, left, interviews Apollo 12 astronauts Charles “Pete” Conrad, Gordon, and Alan Bean during the Rose Parade.courtesy emmyonline.com Apollo 12 astronauts and their wives visiting former President and Mrs. Lyndon B. Johnson at the LBJ Ranch in Texas. On New Year’s Day 1970, Apollo 12 astronauts Charles “Pete” Conrad, Richard Gordon, and Alan Bean led the 81st annual Tournament of Roses Parade in Pasadena, California, as Grand Marshals. Actress June Lockhart, an avid space enthusiast, interviewed them during the TV broadcast of the event. As President Richard Nixon had earlier requested, Conrad, Gordon, and Bean and their wives paid a visit to former President Lyndon B. Johnson and First Lady Lady Bird Johnson at their ranch near Fredericksburg, Texas, on Jan. 14, 1970. The astronauts described their mission to the former President and Mrs. Johnson.  
      The Apollo 12 Command Module Yankee Clipper arrives at the North American Rockwell (NAR) facility in Downey, California. Yankee Clipper at NAR in Downey. A technician examines the Surveyor 3 camera returned by the Apollo 12 astronauts. Managers released the Apollo 12 Command Module (CM) Yankee Clipper from quarantine and shipped it back to its manufacturer, the North American Rockwell plant in Downey, California, on Jan. 12. Engineers there completed a thorough inspection of the spacecraft and eventually prepared it for public display. NASA transferred Yankee Clipper to the Smithsonian Institution in 1973, and today the capsule resides at the Virginia Air & Space Center in Hampton, Virginia. NASA also released from quarantine the lunar samples and the parts of the Surveyor 3 spacecraft returned by the Apollo 12 astronauts. The scientists received their allocated samples in mid-February, while after initial examination in the Lunar Receiving Laboratory (LRL) the Surveyor parts arrived at NASA’s Jet Propulsion Laboratory in Pasadena, California, for detailed analysis. 
      Apollo 13 
      As the first step in the programmatic rescheduling of all Moon landings, on Jan. 7, NASA announced the delay of the Apollo 13 launch from March 12 to April 11. The Saturn V rocket topped with the Apollo spacecraft had rolled out the previous December to Launch Pad 39A where workers began tests on the vehicle. The prime crew of Lovell, Mattingly, and Haise, and their backups Young, Swigert, and Duke, continued to train for the 10-day mission to land in the Fra Mauro region of the Moon.  

      During water recovery exercises, Apollo 13 astronauts (in white flight suits) Thomas “Ken” Mattingly, left, Fred Haise, and James Lovell in the life raft after emerging from the boilerplate Apollo capsule. Apollo 13 astronaut Lovell suits up for a spacewalk training session. Apollo 13 astronaut Haise during a spacewalk simulation. Apollo 13 prime crew members Lovell, Mattingly, and Haise completed their water egress training in the Gulf of Mexico near the coast of Galveston, Texas, on Jan. 24. With support from the Motorized Vessel Retriever, the three astronauts entered a boilerplate Apollo CM. Sailors lowered the capsule into the water, first in the Stable 2 or apex down position. Three self-inflating balloons righted the spacecraft into the Stable 1 apex up position within a few minutes. With assistance from the recovery team, Lovell, Mattingly, and Haise exited the spacecraft onto a life raft. A helicopter lifted them out of the life rafts using Billy Pugh nets and returned them to Retriever. Later that day, the astronauts returned to the MSC to examine Moon rocks in the LRL that the Apollo 12 astronauts had returned the previous November. 
      During their 33.5 hours on the Moon’s surface, Lovell and Haise planned to conduct two four-hour spacewalks to set up the Apollo Lunar Surface Experiment Package (ALSEP), a suite of five investigations designed to collect data about the lunar environment after the astronauts’ departure, and to conduct geologic explorations of the landing site. Mattingly planned to remain in the Command and Service Module (CSM), conducting geologic observations from lunar orbit including photographing potential future landing sites. Lovell and Haise conducted several simulations of the spacewalk timelines, including setting up the ALSEP equipment, practicing taking core samples, and photographing their activities for documentation purposes. They and their backups conducted practice sessions with the partial gravity simulator, also known as POGO, an arrangement of harnesses and servos that simulated walking in the lunar one-sixth gravity. Lovell and Young completed several flights in the Lunar Landing Training Vehicle (LLTV) that simulated the flying characteristics of the Lunar Module (LM) for the final several hundred feet of the descent to the surface. 

      A closed Apollo 13 rock box. An open rock box, partially outfitted with core sample tubes and sample container dispenser. A technician holds the American flag that flew aboard Apollo 13. In the LRL, technicians prepared the Apollo Lunar Sample Return Containers (ALSRC), or rock boxes, for Apollo 13. Like all missions, Apollo 13 carried two ALSRCs, with each box and lid manufactured from a single block of aluminum. Workers placed sample containers and bags and two 2-cm core sample tubes inside the two ALSRCs. Once loaded, technicians sealed the boxes under vacuum conditions so that they would not contain pressure greater than lunar ambient conditions. Engineers at MSC prepared the American flag that Lovell and Haise planned to plant on the Moon for stowage on the LM’s forward landing strut. 
      Apollo 14 
      Workers lower the Apollo 14 Lunar Module (LM) ascent stage onto the Command Module (CM) in a preflight docking test. Workers prepare the Apollo 14 LM descent stage for mating with the ascent stage. Workers prepare the Apollo 14 LM ascent stage for mating with the descent stage. As part of the rescheduling of Moon missions, NASA delayed the launch of the next flight, Apollo 14, from July to October 1970. The CSM and the LM had arrived at NASA’s Kennedy Space Center (KSC) in Florida late in 1969 and technicians conducted tests on the vehicles in the Manned Spacecraft Operations Building (MSOB). On Jan. 12, workers lowered the ascent stage of the LM onto the CSM to perform a docking test – the next time the two vehicles docked they would be on the way to the Moon and the test verified their compatibility. Workers mated the two stages of the LM on Jan. 20. 
      The first stage of Apollo 14’s Saturn V inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida. The second stage of Apollo 14’s Saturn V arrives at the VAB. The third stage of Apollo 14’s Saturn V arrives at KSC. The three stages of the Apollo 14 Saturn V arrived in KSC’s cavernous Vehicle Assembly Building (VAB) in mid-January and while workers stacked the first stage on its Mobile Launch Platform on Jan. 14, they delayed stacking the remainder of the rocket stages until May 1970. That decision proved fortunate, since engineers needed to modify the second stage engines following the pogo oscillations experienced during the Apollo 13 launch. 

      Apollo 14 backup Commander Eugene Cernan prepares for a vacuum chamber test in the Space Environment Simulation Lab (SESL). Apollo 14 backup crew member Joe Engle during a vacuum chamber test in the SESL. Apollo 14 astronauts Alan Shepard, Stuart Roosa, and Edgar Mitchell and their backups Eugene Cernan, Ronald Evans, and Joe Engle continued training for their mission. In addition to working in spacecraft simulators, Shepard, Mitchell, Cernan, and Engle conducted suited vacuum chamber runs in MSC’s Space Environmental Simulation Laboratory (SESL) and completed their first familiarization with deploying their suite of ALSEP investigations.  
      NASA engineer William Creasy, kneeling in sport coat, and the technical team that built the Modular Equipment Transporter (MET), demonstrate the prototype to Roundup editor Sally LaMere. Apollo 14 support astronaut William Pogue tests the MET during parabolic flight. The Apollo 14 astronauts made the first use of the Modular Equipment Transporter (MET), a golf-cart like wheeled conveyance to transport their tools and lunar samples. A team led by project design engineer William Creasy developed the MET based on recommendations from the first two Moon landing crews on how to improve efficiency on the lunar surface. Creasy and his team demonstrated the MET to Sally LaMere, editor of The Roundup, MSC’s employee newsletter. Three support astronauts, William Pogue, Anthony “Tony” England, and Gordon Fullerton tested the MET prototype in simulated one-sixth lunar gravity during parabolic aircraft flights.   
      To be continued … 
      News from around the world in January 1970: 
      January 1 – President Richard Nixon signs the National Environmental Protection Act into law. 
      January 4 – The Beatles hold their final recording session at Abbey Road Studios in London. 
      January 5 – Daytime soap opera All My Children premieres. 
      January 11 – The Kansas City Chiefs beat the Minnesota Vikings 23-7 in Super Bowl IV, played in Tulane Stadium in New Orleans. 
      January 22 – Pan American Airlines flies the first scheduled commercial Boeing-747 flight from New York to London. 
      January 14 – Diana Ross and the Supremes perform their final concert in Las Vegas. 
      January 25 – The film M*A*S*H, directed by Robert Altman, premieres. 
      January 26 – Simon & Garfunkel release Bridge Over Troubled Water, their fifth and final album. 

      View the full article
    • By NASA
      5 Min Read NASA and Italian Space Agency Test Future Lunar Navigation Technology
      The potentially record-breaking Lunar GNSS Receiver Experiment (LuGRE) payload will be the first known demonstration of GNSS signal reception on and around the lunar surface. Credits: NASA/Dave Ryan As NASA celebrates 55 years since the historic Apollo 11 crewed lunar landing, the agency also is preparing new navigation and positioning technology for the Artemis campaign, the agency’s modern lunar exploration program.
      A technology demonstration helping pave the way for these developments is the Lunar GNSS Receiver Experiment (LuGRE) payload, a joint effort between NASA and the Italian Space Agency to demonstrate the viability of using existing GNSS (Global Navigation Satellite System) signals for positioning, navigation, and timing on the Moon.
      During its voyage on an upcoming delivery to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative, LuGRE would demonstrate acquiring and tracking signals from both the U.S. GPS and European Union Galileo GNSS constellations during transit to the Moon, during lunar orbit, and finally for up to two weeks on the lunar surface itself.
      The Lunar GNSS Receiver Experiment (LuGRE) will investigate whether signals from two Global Navigation Satellite System (GNSS) constellations, the U.S. Global Positioning System (GPS) and European Union’s Galileo, can be tracked at the Moon and used for positioning, navigation, and timing (PNT). The LuGRE payload is one of the first demonstrations of GNSS signal reception and navigation on and around the lunar surface, an important milestone for how lunar missions will access navigation and positioning technology. If successful, LuGRE would demonstrate that spacecraft can use signals from existing GNSS satellites at lunar distances, reducing their reliance on ground-based stations on the Earth for lunar navigation.
      Today, GNSS constellations support essential services like navigation, banking, power grid synchronization, cellular networks, and telecommunications. Near-Earth space missions use these signals in flight to determine critical operational information like location, velocity, and time.
      NASA and the Italian Space Agency want to expand the boundaries of GNSS use cases. In 2019, the Magnetospheric Multiscale (MMS) mission broke the world record for farthest GPS signal acquisition 116,300 miles from the Earth’s surface — nearly half of the 238,900 miles between Earth and the Moon. Now, LuGRE could double that distance.
      “GPS makes our lives safer and more viable here on Earth,” said Kevin Coggins, NASA deputy associate administrator and SCaN (Space Communications and Navigation) Program manager at NASA Headquarters in Washington. “As we seek to extend humanity beyond our home planet, LuGRE should confirm that this extraordinary technology can do the same for us on the Moon.”
      NASA, Firefly, Qascom, and Italian Space Agency team members examine LuGRE hardware in a clean room.Firefly Aerospace Reliable space communication and navigation systems play a vital role in all NASA missions, providing crucial connections from space to Earth for crewed and uncrewed missions alike. Using a blend of government and commercial assets, NASA’s Near Space and Deep Space Networks support science, technology demonstrations, and human spaceflight missions across the solar system.
      “This mission is more than a technological milestone,” said Joel Parker, policy lead for positioning, navigation, and timing at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We want to enable more and better missions to the Moon for the benefit of everyone, and we want to do it together with our international partners.”
      This mission is more than a technological milestone. We want to enable more and better missions to the Moon for the benefit of everyone…
      JOEL PARKER
      PNT Policy Lead at NASA's Goddard Space Flight Center
      The data-gathering LuGRE payload combines NASA-led systems engineering and mission management with receiver software and hardware developed by the Italian Space Agency and their industry partner Qascom — the first Italian-built hardware to operate on the lunar surface.
      Any data LuGRE collects is intended to open the door for use of GNSS to all lunar missions, not just those by NASA or the Italian Space Agency. Approximately six months after LuGRE completes its operations, the agencies will release its mission data to broaden public and commercial access to lunar GNSS research.
      Firefly Aerospace’s Blue Ghost Mission One lander is carrying 10 NASA science and technology instruments to the Moon as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.Firefly Aerospace “A project like LuGRE isn’t about NASA alone,” said NASA Goddard navigation and mission design engineer Lauren Konitzer. “It’s something we’re doing for the benefit of humanity. We’re working to prove that lunar GNSS can work, and we’re sharing our discoveries with the world.”
      The LuGRE payload is one of 10 NASA-funded science experiments launching to the lunar surface on this delivery through NASA’s CLPS initiative. Through CLPS, NASA works with American companies to provide delivery and quantity contracts for commercial deliveries to further lunar exploration and the development of a sustainable lunar economy. As of 2024, the agency has 14 private partners on contract for current and future CLPS missions.
      Demonstrations like LuGRE could lay the groundwork for GNSS-based navigation systems on the lunar surface. Bridging these existing systems with emerging lunar-specific navigation solutions has the potential to define how all spacecraft navigate lunar terrain in the Artemis era.
      Artist’s concept rendering of LuGRE aboard the Blue Ghost lunar lander receiving signals from Earth’s GNSS constellations.NASA/Dave Ryan The payload is a collaborative effort between NASA’s Goddard Space Flight Center and the Italian Space Agency. Funding and oversight for the LuGRE payload comes from the agency’s SCaN Program office. It was chosen by NASA as one of 10 funded research and technology demonstrations for delivery to the lunar surface by Firefly Aerospace Inc, a flight under the agency’s CLPS initiative.
      About the Author
      Korine Powers
      Senior Writer and Education LeadKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, education and outreach, exploration activities, and more.
      Share
      Details
      Last Updated Jan 09, 2025 EditorGoddard Digital TeamContactKorine Powerskorine.powers@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Goddard Space Flight Center Artemis Blue Ghost (lander) Commercial Lunar Payload Services (CLPS) Communicating and Navigating with Missions Earth's Moon Near Space Network Space Communications & Navigation Program View the full article
  • Check out these Videos

×
×
  • Create New...