Members Can Post Anonymously On This Site
EarthCARE taking wing
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Sustainable Flight Demonstrator project concluded wind tunnel testing in the fall of 2024. Tests on a Boeing-built X-66 model were completed at NASA’s Ames Research Center in California’s Silicon Valley in its 11-Foot Transonic Unitary Plan Facility. The model underwent tests representing expected flight conditions to obtain engineering information to influence design of the wing and provide data for flight simulators.NASA/Brandon Torres Navarrete NASA’s Sustainable Flight Demonstrator (SFD) project recently concluded wind tunnel tests of its X-66 semi-span model in partnership with Boeing. The model, designed to represent half the aircraft, allows the research team to generate high-quality data about the aerodynamic forces that would affect the actual X-66.
Test results will help researchers identify areas where they can refine the X-66 design – potentially reducing drag, enhancing fuel efficiency, or adjusting the vehicle shape for better flying qualities.
Tests on the Boeing-built X-66 semi-span model were completed at NASA’s Ames Research Center in California’s Silicon Valley in its 11-Foot Transonic Unitary Plan Facility. The model underwent tests representing expected flight conditions so the team could obtain engineering information to influence the design of the aircraft’s wing and provide data for flight simulators.
NASA’s Sustainable Flight Demonstrator project concluded wind tunnel testing in the fall of 2024. Tests on a Boeing-built X-66 model were completed at NASA’s Ames Research Center in California’s Silicon Valley in its 11-Foot Transonic Unitary Plan Facility. Pressure points, which are drilled holes with data sensors attached, are installed along the edge of the wing and allow engineers to understand the characteristics of airflow and will influence the final design of the wing.NASA/Brandon Torres Navarrete Semi-span tests take advantage of symmetry. The forces and behaviors on a model of half an aircraft mirror those on the other half. By using a larger half of the model, engineers increase the number of surface pressure measurements. Various sensors were placed on the wing to measure forces and movements to calculate lift, drag, stability, and other important characteristics.
The semi-span tests follow earlier wind tunnel work at NASA’s Langley Research Center in Hampton, Virginia, using a smaller model of the entire aircraft. Engineers will study the data from all of the X-66 wind tunnel tests to determine any design changes that should be made before fabrication begins on the wing that will be used on the X-66 itself.
The SFD project is NASA’s effort to develop more efficient aircraft configurations as the nation moves toward aviation that’s more economically, societally, and environmentally sustainable. The project seeks to provide information to inform the next generation of single-aisle airliners, the most common aircraft in commercial aviation fleets around the world. Boeing and NASA are partnering to develop the X-66 experimental demonstrator aircraft.
Share
Details
Last Updated Feb 05, 2025 EditorDede DiniusContactSarah Mannsarah.mann@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Aeronautics Ames Research Center Green Aviation Tech Langley Research Center Sustainable Aviation Explore More
5 min read NASA Demonstrates Software ‘Brains’ Shared Across Satellite Swarms
Article 1 day ago 2 min read NASA Awards Contract for Airborne Science Flight Services Support
Article 2 days ago 3 min read NASA Radar Imagery Reveals Details About Los Angeles-Area Landslides
Article 5 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Aeronautics
Green Aviation Tech
Aircraft Flown at Armstrong
View the full article
-
By European Space Agency
With ESA’s EarthCARE satellite and four measuring instruments all working extremely well and fully commissioned, the mission’s ‘first level’ data stream is now freely available.
By combining data from all four instruments, scientists ultimately aim to address a critical Earth science question: how do clouds and aerosols affect the heating and cooling of our atmosphere?
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA/Quincy Eggert Upside down can be right side up. That’s what NASA researchers determined for tests of an efficient wing concept that could be part of the agency’s answer to making future aircraft sustainable.
Research from NASA’s Advanced Air Transport Technology project involving a 10-foot model could help NASA engineers validate the concept of the Transonic Truss-Braced Wing (TTBW), an aircraft using long, thin wings stabilized by diagonal struts. The TTBW concept’s efficient wings add lift and could result in reduced fuel use and emissions for future commercial single-aisle aircraft. A team at the Flight Loads Laboratory at NASA’s Armstrong Flight Research Center in Edwards, California, are using the model, called the Mock Truss-Braced Wing, to verify the concept and their testing methods.
The model wing and the strut have instruments installed to measure strain, then attached to a rigid vertical test frame. Wire hanging from an overhead portion of the frame stabilizes the model wing for tests. For these tests, researchers chose to mount the 10-foot-long aluminum wing upside down, adding weights to apply stress. The upside-down orientation allows gravity to simulate the lift a wing would experience in flight.
Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. A view from above shows the test structure, the wing, and the strut. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman “A strut reduces the structure needed on the main wing, and the result is less structural weight, and a thinner wing,” said Frank Pena, NASA mock wing test director. “In this case, the test measured the reaction forces at the base of the main wing and at the base of the strut. There is a certain amount of load sharing between the wing and the strut, and we are trying to measure how much of the load stays in the main wing and how much is transferred to the strut.”
To collect those measurements, the team added weights one at a time to the wing and the truss. In another series of tests, engineers tapped the wing structure with an instrumented hammer in key locations, monitoring the results with sensors.
“The structure has natural frequencies it wants to vibrate at depending on its stiffness and mass,” said Ben Park, NASA mock wing ground vibration test director. “Understanding the wing’s frequencies, where they are and how they respond, are key to being able to predict how the wing will respond in flight.”
Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Charlie Eloff, left, and Lucas Oramas add weight to the test wing to apply stress used to determine its limits. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Adding weights to the wingtip, tapping the structure with a hammer, and collecting the vibration response is an unusual testing method because it adds complexity, Park said. The process is worth it, he said, if it provides the data engineers are seeking. The tests are also unique because NASA Armstrong designed, built, and assembled the wing, strut, and test fixture, and conducted the tests.
With the successful loads calibration and vibration tests nearly complete on the 10-foot wing, the NASA Armstrong Flight Loads Laboratory team is working on designing a system and hardware for testing a 15-foot model made from graphite-epoxy composite. The Advanced Air Transport Technology TTBW team at NASA’s Langley Research Center in Hampton, Virginia, is designing and constructing the model, which is called the Structural Wing Experiment Evaluating Truss-bracing.
The larger wing model will be built with a structural design that will more closely resembles what could potentially fly on a future commercial aircraft. The goals of these tests are to calibrate predictions with measured strain data and learn how to test novel aircraft structures such as the TTBW concept.
NASA’s Advanced Air Transport Technology project falls under NASA’s Advanced Air Vehicles Program, which evaluates and develops technologies for new aircraft systems and explores promising air travel concepts.
Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Frank Pena, test director, checks the mock wing. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Samson Truong, from left, and Ben Park, NASA mock wing ground vibration test director, prepare for a vibration test. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Ben Park, NASA mock wing ground vibration test director, taps the wing structure with an instrumented hammer in key locations and sensors monitor the results. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Share
Details
Last Updated Dec 04, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Advanced Air Transport Technology Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Flight Innovation Green Aviation Tech Sustainable Aviation Explore More
4 min read NASA’s C-20A Studies Extreme Weather Events
Article 6 hours ago 3 min read NASA Experts Share Inspiring Stories of Perseverance to Students
Article 2 days ago 3 min read An Electronic Traffic Monitor for Airports
Ground traffic management program saves passengers and airlines time while cutting fuel costs
Article 1 week ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Armstrong Programs & Projects
Armstrong Aeronautics Projects
Armstrong Capabilities & Facilities
View the full article
-
By European Space Agency
With the initial images from each of the instruments aboard ESA’s EarthCARE satellite now in hand, it's time to reveal how these four advanced sensors work in synergy to measure exactly how clouds and aerosols influence the heating and cooling of our atmosphere.
View the full article
-
By European Space Agency
Launched in May, ESA’s EarthCARE satellite has been making waves, with the first images from three of its scientific instruments already delivered. Now, the spotlight is firmly on the atmospheric lidar, the most advanced of the satellite’s four instruments.
This cutting-edge sensor has captured detailed 20 km-high vertical profiles of atmospheric aerosols – tiny particles and droplets from natural sources like wildfires, dust, and sea spray, and from human activities like industrial emissions or burning of wood – and clouds across various regions of the globe.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.