Members Can Post Anonymously On This Site
Patrol robot dog seems to become reality
-
Similar Topics
-
By NASA
On Sept. 20, 2024, four students experienced the wonder of space exploration at NASA’s Johnson Space Center in Houston, taking part in an international competition that brought their work to life aboard the International Space Station.
Now in its fifth year, the Kibo Robot Programming Challenge (Kibo-RPC) continues to push the boundaries of robotics, bringing together the world’s brightest young minds for a real-world test of programming, problem-solving, and innovation.
The Kibo Robot Programming Challenge (Kibo-RPC) students tour the Gateway Habitation and Logistics Outpost module at NASA’s Johnson Space Center in Houston.NASA/Helen Arase Vargas The stakes reached new heights in this year’s competition, with 661 teams totaling 2,788 students from 35 countries and regions competing to program robots aboard the orbiting laboratory. Organized by the Japan Aerospace Exploration Agency in collaboration with the United Nations Office for Outer Space Affairs, the challenge provided a unique platform for students to test their skills on a global stage.
Meet Team Salcedo
Representing the U.S., Team Salcedo is composed of four talented students: Aaron Kantsevoy, Gabriel Ashkenazi, Justin Bonner, and Lucas Paschke. Each member brought a unique skill set and perspective, contributing to the team’s well-rounded approach to the challenge.
From left to right are Kibo-RPC students Gabriel Ashkenazi, Lucas Paschke, Aaron Kantsevoy, and Justin Bonner. NASA/Helen Arase Vargas The team was named in honor of Dr. Alvaro Salcedo, a robotics teacher and competitive robotics coach who had a significant impact on Kantsevoy and Bonner during high school. Dr. Salcedo played a crucial role in shaping their interests and aspirations in science, technology, engineering, and mathematics (STEM), inspiring them to pursue careers in these fields.
Kantsevoy, a computer science major at Georgia Institute of Technology, or Georgia Tech, led the team with three years of Kibo-RPC experience and a deep interest in robotics and space-based agriculture. Bonner, a second-year student at the University of Miami, is pursuing a triple major in computer science, artificial intelligence, and mathematics. Known for his quick problem-solving, he played a key role as a strategist and computer vision expert. Paschke, a first-time participant and computer science student at Georgia Tech, focused on intelligence systems and architecture, and brought fresh insights to the table. Ashkenazi, also studying computer science at Georgia Tech, specialized in computer vision and DevOps, adding depth to the team’s technical capabilities.
AstroBee Takes Flight
The 2024 competition tasked students with programming AstroBee, a free-flying robot aboard the station, to navigate a complex course while capturing images scattered across the orbital outpost. For Team Salcedo, the challenge reached its peak as their code was tested live on the space station.
The Kibo-RPC students watch their code direct Astrobee’s movements at Johnson Space Center with NASA Program Specialist Jamie Semple on Sept. 20, 2024.NASA/Helen Arase Vargas The robot executed its commands in real time, maneuvering through the designated course to demonstrate precision, speed, and adaptability in the microgravity environment. Watching AstroBee in action aboard the space station offered a rare glimpse of the direct impact of their programming skills and added a layer of excitement that pushed them to fine-tune their approach.
Overcoming Challenges in Real Time
Navigating AstroBee through the orbital outpost presented a set of unique challenges. The team had to ensure the robot could identify and target images scattered throughout the station with precision while minimizing the time spent between locations.
The Kibo-RPC students watch in real time as the free-flying robot Astrobee performs maneuvers aboard the International Space Station, executing tasks based on their input to test its capabilities. NASA/Helen Arase Vargas Using quaternions for smooth rotation in 3D space, they fine-tuned AstroBee’s movements to adjust camera angles and capture images from difficult positions without succumbing to the limitations of gimbal lock. Multithreading allowed the robot to simultaneously process images and move to the next target, optimizing the use of time in the fast-paced environment.
The Power of Teamwork and Mentorship
Working across different locations and time zones, Team Salcedo established a structured communication system to ensure seamless collaboration. Understanding each team member’s workflow and adjusting expectations accordingly helped them maintain efficiency, even when setbacks occurred.
Team Salcedo tour the Space Vehicle Mockup Facility with their NASA mentors (from top left to right) Education Coordinator Kaylie Mims, International Space Station Research Portfolio Manager Jorge Sotomayer, and Kibo-RPC Activity Manager Jamie Semple. NASA/Helen Arase Vargas Mentorship was crucial to their success, with the team crediting several advisors and educators for their guidance. Kantsevoy acknowledged his first STEM mentor, Casey Kleiman, who sparked his passion for robotics in middle school.
The team expressed gratitude to their Johnson mentors, including NASA Program Specialist Jamie Semple, Education Coordinator Kaylie Mims, and International Space Station Research Portfolio Manager Jorge Sotomayer, for guiding them through the program’s processes and providing support throughout the competition.
They also thanked NASA’s Office of STEM Engagement for offering the opportunity to present their project to Johnson employees.
“The challenge mirrors how the NASA workforce collaborates to achieve success in a highly technical environment. Team Salcedo has increased their knowledge and learned skills that they most likely would not have acquired individually,” said Semple. “As with all of our student design challenges, we hope this experience encourages the team to continue their work and studies to hopefully return to NASA in the future as full-time employees.”
Pushing the Boundaries of Innovation
The Kibo-RPC allowed Team Salcedo to experiment with new techniques, such as Slicing Aided Hyperinference—an approach that divides images into smaller tiles for more detailed analysis. Although this method showed promise in detecting smaller objects, it proved too time-consuming under the competition’s time constraints, teaching the students valuable lessons about prioritizing efficiency in engineering.
The Kibo-RPC students present their robotic programming challenge to the International Space Station Program. NASA/Bill Stafford For Team Salcedo, the programming challenge taught them the value of communication, the importance of learning from setbacks, and the rewards of perseverance. The thrill of seeing their code in action on the orbital outpost was a reminder of the limitless possibilities in robotics and space exploration.
Inspiring the Next Generation
With participants from diverse backgrounds coming together to compete on a global platform, the Kibo-RPC continues to be a proving ground for future innovators.
The challenge tested the technical abilities of students and fostered personal growth and collaboration, setting the stage for the next generation of robotics engineers and leaders.
The Kibo-RPC students and their mentors at the Mission Control Center. NASA/Helen Arase Vargas
As Team Salcedo looks ahead, they carry with them the skills, experiences, and inspiration needed to push the boundaries of human space exploration.
“With programs like Kibo-RPC, we are nurturing the next generation of explorers – the Artemis Generation,” said Sotomayer. “It’s not far-fetched to imagine that one of these students could eventually be walking on the Moon or Mars.”
The winners were announced virtually from Japan on Nov. 9, with Team Salcedo achieving sixth place.
Watch the international final round event here.
For more information on the Kibo Robot Programming Challenge, visit: https://jaxa.krpc.jp/
View the full article
-
By NASA
Learn Home GLOBE Eclipse and Civil Air… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration
The Civil Air Patrol (CAP) is a volunteer organization that serves as the official civilian auxiliary of the United States Air Force. The organization has an award-winning aerospace education program that promotes Science, Technology Engineering, & Mathematics (STEM)-related careers and activities. The total solar eclipse on 8 April 2024 was a unique opportunity to design a mission for cadets, senior members, and educators to collect atmospheric data in contribution the Global Learning and Observations to Benefit the Environment (GLOBE) Program’s GLOBE Eclipse protocol, for which a temporary tool in the GLOBE Observer app made it possible for volunteer observers to document and submit air temperature and cloud data during the eclipse.
For the first time ever, the CAP had cadets and senior members participating in a mission from every wing (US state), in addition to two US territories and 2 Canadian provinces. Over 400 teams with over 3,000 cadets and over 1,000 senior members collected air temperature, clouds, wind, and precipitation for a total of 4 hours before, during, and after the eclipse. This work was led by Capt. Shannon Babb who organized the mission with the aerospace education team led from the Rocky Mountain Region.
The collaboration between GLOBE Eclipse and CAP gave cadets the opportunity to do real, hands-on Earth science and be part of a mission alongside senior members. It also brought in over 40,000 students and more than 600 educators through the Civil Air Patrol’s education sites involving K-12 formal and informal educators at schools, youth organizations, museums and libraries. This unique collaboration was so successful, the CAP wants to continue doing missions alongside citizen science programs at NASA and the GLOBE Program. A 2025 mission is being formulated, focused on contrail formation using the strengths of the CAP in aeronautics and unique cloud observations made using the GLOBE Observer app. Results and announcements of 2025 mission plans were presented at the Civil Air Patrol National Conference on 16-17 August 2024 in San Antonio, Texas, USA.
GLOBE Observer is part of the NASA Earth Science Education Collaborative (NESEC), which is led by the Institute for Global Environmental Strategies (IGES) and supported by NASA under cooperative agreement award number NNX16AE28A. NESEC is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
https://www.gocivilairpatrol.com/programs/aerospace-education/curriculum/2024-solar-eclipse
Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadets making atmospheric measurements during the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadets making atmospheric measurements during the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Civil Air Patrol Cadet observing the 8 April 2024 total solar eclipse. Civil Air Patrol Share
Details
Last Updated Oct 07, 2024 Editor NASA Science Editorial Team Related Terms
2024 Solar Eclipse Earth Science Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Science Activation Explore More
5 min read Science Activation’s PLACES Team Facilitates Third Professional Learning Institute
Article
3 days ago
2 min read Culturally Inclusive Planetary Engagement in Colorado
Article
4 days ago
40 min read GPM Celebrates Ten Years of Observing Precipitation for Science and Society
Article
4 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
Eclipsing binary stars point the way to exoplanets and many other discoveries. Be one of the first to join the new Eclipsing Binary Patrol project and help discover them! NASA/Goddard Space Flight Center Eclipsing binaries are special pairs of stars that cross in front of one another as they orbit—stars that take turns blocking one another from our view. At Eclipsing Binary Patrol, the newest NASA-funded citizen science project, you’ll have a chance to help discover these unusual pairs of objects.
In Eclipsing Binary Patrol, you’ll work with real data from NASA’s TESS (Transiting Exoplanet Survey Satellite) mission. TESS collects a lot of information! But computers sometimes struggle to tell when the data show us something unimportant, like background noise or objects that aren’t stars. With your help, we can identify the correct targets and gain deeper insights into the behavior of double star systems.
“I’ve never worked as a professional astronomer, but being part of the Eclipsing Binary Patrol allows me to work with real data and contribute to actual discoveries,” said Aline Fornear, a volunteer from Brazil. “It’s exciting beyond words to know that my efforts are helping with the understanding of star systems so far away, and potentially new worlds, too!”
As a volunteer at Eclipsing Binary Patrol, your work will help confirm when a particular target is indeed an eclipsing binary, verify its orbital period, and ensure the target is the true source of the detected eclipses. You’ll be essential in distinguishing genuine discoveries from false signals. To get involved, visit our page on the Zooniverse platform and start sciencing!
Facebook logo @DoNASAScience @DoNASAScience Share
Details
Last Updated Sep 05, 2024 Related Terms
Astrophysics Citizen Science Explore More
6 min read NASA’s Hubble, MAVEN Help Solve the Mystery of Mars’ Escaping Water
Article
1 hour ago
5 min read NASA’s Webb Reveals Distorted Galaxy Forming Cosmic Question Mark
Article
1 day ago
3 min read NASA’s Mini BurstCube Mission Detects Mega Blast
Article
2 days ago
View the full article
-
By NASA
The summer months are usually a time for teachers to take a break from the classroom and enjoy some well-earned rest. But at NASA’s Johnson Space Center in Houston, two experienced educators dedicated their summer vacations to learning how to enrich their students’ science, technology, engineering, and mathematics (STEM) education and inspire them to achieve their dreams.
Johnson’s Office of STEM Engagement (OSTEM) welcomed Jerry “Denise” Dunn and Shawnda Folsom as full-time interns for the summer. Both women came to Johnson through the Oklahoma Space Grant Consortium, which not only supports students pursuing STEM careers but also provides curriculum enhancement and professional development opportunities for educators. Dunn and Folsom were invited to become interns after completing STELLAR, the consortium’s yearlong mentorship program that immerses educators in hands-on STEM-based activities for classroom application.
Denise Dunn (left) and Shawnda Folsom. For Dunn, a middle school special education teacher in the small town of Checotah, Oklahoma, participating in STELLAR opened several doors that ultimately led to her internship. Dunn works primarily with students who have severe and profound disabilities and is fiercely passionate about increasing their access to STEM education and opportunities.
“If you look at the research, there’s been a big push for STEM for everyone except kids with disabilities. The number of people with disabilities in STEM-related fields hasn’t changed in a decade,” she said. “We need to promote that more.”
Dunn suggested that she and her STELLAR colleagues support Challenge Air, a program that teaches children with disabilities about aviation and lets them co-pilot a plane. The STELLAR group set up activity tables at a Challenge Air event where kids could build rockets or make Moon craters and learn about space exploration. That experience inspired the Oklahoma Space Grant Consortium to create an annual STEM engagement event specifically for kids with disabilities and their families.
Denise Dunn (left) helps a family build a foam rocket at a Challenge Air event.Image courtesy of Denise Dunn Dunn subsequently attended the Space Exploration Educators Conference where she connected with Tracy Minish, a former Johnson employee with more than 30 years of experience in the Space Shuttle Program and Mission Control Center who is also legally blind. Minish met virtually with Dunn’s students to encourage them to pursue their dreams, then invited her to Johnson to learn about the accommodations and support NASA provides to employees with disabilities. Dunn used what she learned to create a teacher workshop that shared practical strategies for STEM special education. These efforts and the connections she made at Johnson paved the way for her internship.
“I want to know more about what NASA does to support its employees with disabilities. I also want to know more about those employees and their stories so that I can share that with my students,” she said. Dunn also appreciated connecting with Johnson’s No Boundaries Employee Resource Group because they have the power to provide representation for kids with disabilities.
“Kids with disabilities are just natural problem solvers and they have unique perspectives, and they need to see their value,” she said. “And NASA – what a great place for them to see that.”
For Folsom, an elementary-level science and social studies teacher for Velma-Alma Public Schools, the internship offer came at a time of personal and professional change. In addition to planning her upcoming wedding and a move, juggling her kids’ schedules, and pursuing a master’s degree in education, Folsom was also preparing to take on a new, school district-wide role. “I am ecstatic to take on a new challenge – building, implementing, and teaching a comprehensive STEM program for students from pre-kindergarten through 12th grade,” she said. She saw the internship as a chance to immerse herself in NASA’s work and bring new opportunities for STEM learning and engagement back to her students. “I was not aware of all of the student design challenges that NASA has, so I am super excited to share these and have future classes participate in them,” she said.
Shawnda Folsom leads an Office of STEM Engagement (OSTEM) activity for youth during Bring Youth to Work Day at NASA’s Johnson Space Center in Houston. Image courtesy of Shawnda Folsom Folsom is also determined to see more NASA interns from her school district, which is extremely rural and qualifies for Title I support. “My goal is to shake the right hands and make the connections that will allow me to set my students up for their future, which hopefully will include an internship for many of them,” she said. “I want my ‘small town’ mindset students to realize how much talent and potential they each have. I want them to know they can do anything.” She noted that her own story – which involves a nontraditional career path and now, at 41, an internship – could help inspire her students.
Together with their OSTEM mentors and teammates, Dunn and Folsom spent their summer creating hands-on activities for children who attended events like Johnson’s Bring Youth to Work Day and the Dorothy Vaughan Center in Honor of the Women of Apollo dedication. They prepared an aerodynamics lesson plan and STEM activity for the MLB Players STEM League Global Championship in July, supported and participated in NASA-led professional development programs for teachers, and worked on a new camp experience resource to complement OSTEM’s ‘First Woman’ camp experience.
Denise Dunn and Shawnda Folsom present a remote sensing activity for local scouts who attended the Dorothy Vaughan Center in Honor of the Women of Apollo event at Johnson Space Center on July 19, 2024. NASA/Robert Markowitz Both women look forward to returning to their schools later this month and to sharing what they learned with their students.
“I want to expose my students to higher-level thinking and new STEM challenges,” said Folsom. “I want them to have those ‘a ha’ moments that will possibly launch their lives down a path they never fathomed could happen.”
“This internship has made me more aware of opportunities, not only to continue to advocate for my students, but for myself,” Dunn said. “Keep going. Keep dreaming.”
View the full article
-
By European Space Agency
Video: 00:14:53 In the second episode of this docu series, we take a closer look into what it took to build ESA’s Young Professional Satellite (YPSat). YPSat’s mission objectives are to capture the key moments of Ariane 6’s inaugural flight and take in-orbit pictures of Earth and space. To achieve this, the satellite requires the multiple sub-systems to work in harmony and adhere to a pre-defined mission sequence.
This episode zooms in four of the sub-systems: the Wake-Up System (WUS), Battery, On-Board Computer (OBC) and Telecommunications.
Running at ultra low power, the WUS circuit board was designed, tested and manufactured specifically for YPSat. Created to meet Arianespace’s requirement to be operational on the launchpad for 45 days, its function is to wake up the satellite during the launch to record the fairing separation.
Once the WUS detects the launch, it will signal to the battery to turn on the rest of the satellite. The battery has the challenge to maintain enough charge to power the remainder of the components.
The On-Board Computer (OBC) then takes the lead to orchestrate the rest of the mission. The OBC acts as the brain of the satellites; it sends commands to all the other sub-systems, including sending the commands to record the videos and pictures.
Once these are captured, the Telecommunications team takes over to coordinate with the ground stations to send the data back on Earth so it can be decoded into clear images. The challenge is to ensure enough communication between the satellite and Earth so the data is properly retrieved before the YPSat disintegrates upon re-entry.
One day prior launch, YPSat is now sitting in Ariane 6’s capsule. To get there, the satellite was subject to rigorous tests and certifications to meet the stringent standards of the European Space Agency and Arianespace. Will YPSat accomplish its mission objectives? We'll find out in the next episode.
Credits:
Directed and produced by Chilled Winston: https://chilledwinston.com/ and Emma de Cocker
Powered by ESA - European Space Agency
Music from Epidemic Sound
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.